import math import numpy as np from common.numpy_fast import clip from common.realtime import DT_CTRL from cereal import log from selfdrive.controls.lib.drive_helpers import get_steer_max from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED class LatControlLQR(LatControl): def __init__(self, CP, CI): super().__init__(CP, CI) self.scale = CP.lateralTuning.lqr.scale self.ki = CP.lateralTuning.lqr.ki self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2)) self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1)) self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2)) self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2)) self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1)) self.dc_gain = CP.lateralTuning.lqr.dcGain self.x_hat = np.array([[0], [0]]) self.i_unwind_rate = 0.3 * DT_CTRL self.i_rate = 1.0 * DT_CTRL self.reset() def reset(self): super().reset() self.i_lqr = 0.0 def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): lqr_log = log.ControlsState.LateralLQRState.new_message() steers_max = get_steer_max(CP, CS.vEgo) torque_scale = (0.45 + CS.vEgo / 60.0)**2 # Scale actuator model with speed # Subtract offset. Zero angle should correspond to zero torque steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)) instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg desired_angle += instant_offset # Only add offset that originates from vehicle model errors lqr_log.steeringAngleDesiredDeg = desired_angle # Update Kalman filter angle_steers_k = float(self.C.dot(self.x_hat)) e = steering_angle_no_offset - angle_steers_k self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e) if CS.vEgo < MIN_STEER_SPEED or not active: lqr_log.active = False lqr_output = 0. output_steer = 0. self.reset() else: lqr_log.active = True # LQR u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat)) lqr_output = torque_scale * u_lqr / self.scale # Integrator if CS.steeringPressed: self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr)) else: error = desired_angle - angle_steers_k i = self.i_lqr + self.ki * self.i_rate * error control = lqr_output + i if (error >= 0 and (control <= steers_max or i < 0.0)) or \ (error <= 0 and (control >= -steers_max or i > 0.0)): self.i_lqr = i output_steer = lqr_output + self.i_lqr output_steer = clip(output_steer, -steers_max, steers_max) lqr_log.steeringAngleDeg = angle_steers_k lqr_log.i = self.i_lqr lqr_log.output = output_steer lqr_log.lqrOutput = lqr_output lqr_log.saturated = self._check_saturation(steers_max - abs(output_steer) < 1e-3, CS) return output_steer, desired_angle, lqr_log