#include #include #include #include #include "common/swaglog.h" #include "common/util.h" #include "bmx055_magn.hpp" static int16_t compensate_x(trim_data_t trim_data, int16_t mag_data_x, uint16_t data_rhall) { uint16_t process_comp_x0 = data_rhall; int32_t process_comp_x1 = ((int32_t)trim_data.dig_xyz1) * 16384; uint16_t process_comp_x2 = ((uint16_t)(process_comp_x1 / process_comp_x0)) - ((uint16_t)0x4000); int16_t retval = ((int16_t)process_comp_x2); int32_t process_comp_x3 = (((int32_t)retval) * ((int32_t)retval)); int32_t process_comp_x4 = (((int32_t)trim_data.dig_xy2) * (process_comp_x3 / 128)); int32_t process_comp_x5 = (int32_t)(((int16_t)trim_data.dig_xy1) * 128); int32_t process_comp_x6 = ((int32_t)retval) * process_comp_x5; int32_t process_comp_x7 = (((process_comp_x4 + process_comp_x6) / 512) + ((int32_t)0x100000)); int32_t process_comp_x8 = ((int32_t)(((int16_t)trim_data.dig_x2) + ((int16_t)0xA0))); int32_t process_comp_x9 = ((process_comp_x7 * process_comp_x8) / 4096); int32_t process_comp_x10 = ((int32_t)mag_data_x) * process_comp_x9; retval = ((int16_t)(process_comp_x10 / 8192)); retval = (retval + (((int16_t)trim_data.dig_x1) * 8)) / 16; return retval; } static int16_t compensate_y(trim_data_t trim_data, int16_t mag_data_y, uint16_t data_rhall) { uint16_t process_comp_y0 = trim_data.dig_xyz1; int32_t process_comp_y1 = (((int32_t)trim_data.dig_xyz1) * 16384) / process_comp_y0; uint16_t process_comp_y2 = ((uint16_t)process_comp_y1) - ((uint16_t)0x4000); int16_t retval = ((int16_t)process_comp_y2); int32_t process_comp_y3 = ((int32_t) retval) * ((int32_t)retval); int32_t process_comp_y4 = ((int32_t)trim_data.dig_xy2) * (process_comp_y3 / 128); int32_t process_comp_y5 = ((int32_t)(((int16_t)trim_data.dig_xy1) * 128)); int32_t process_comp_y6 = ((process_comp_y4 + (((int32_t)retval) * process_comp_y5)) / 512); int32_t process_comp_y7 = ((int32_t)(((int16_t)trim_data.dig_y2) + ((int16_t)0xA0))); int32_t process_comp_y8 = (((process_comp_y6 + ((int32_t)0x100000)) * process_comp_y7) / 4096); int32_t process_comp_y9 = (((int32_t)mag_data_y) * process_comp_y8); retval = (int16_t)(process_comp_y9 / 8192); retval = (retval + (((int16_t)trim_data.dig_y1) * 8)) / 16; return retval; } static int16_t compensate_z(trim_data_t trim_data, int16_t mag_data_z, uint16_t data_rhall) { int16_t process_comp_z0 = ((int16_t)data_rhall) - ((int16_t) trim_data.dig_xyz1); int32_t process_comp_z1 = (((int32_t)trim_data.dig_z3) * ((int32_t)(process_comp_z0))) / 4; int32_t process_comp_z2 = (((int32_t)(mag_data_z - trim_data.dig_z4)) * 32768); int32_t process_comp_z3 = ((int32_t)trim_data.dig_z1) * (((int16_t)data_rhall) * 2); int16_t process_comp_z4 = (int16_t)((process_comp_z3 + (32768)) / 65536); int32_t retval = ((process_comp_z2 - process_comp_z1) / (trim_data.dig_z2 + process_comp_z4)); /* saturate result to +/- 2 micro-tesla */ retval = std::clamp(retval, -32767, 32767); /* Conversion of LSB to micro-tesla*/ retval = retval / 16; return (int16_t)retval; } static int16_t parse_xy(uint8_t lsb, uint8_t msb){ // 13 bit uint16_t combined = (uint16_t(msb) << 5) | uint16_t(lsb >> 3); return int16_t(combined << 3) / (1 << 3); } static int16_t parse_z(uint8_t lsb, uint8_t msb){ // 15 bit uint16_t combined = (uint16_t(msb) << 7) | uint16_t(lsb >> 1); return int16_t(combined << 1) / (1 << 1); } static uint16_t parse_rhall(uint8_t lsb, uint8_t msb){ // 14 bit return (uint16_t(msb) << 6) | uint16_t(lsb >> 2); } BMX055_Magn::BMX055_Magn(I2CBus *bus) : I2CSensor(bus) {} int BMX055_Magn::init(){ int ret; uint8_t buffer[1]; uint8_t trim_x1y1[2] = {0}; uint8_t trim_xyz_data[4] = {0}; uint8_t trim_xy1xy2[10] = {0}; // suspend -> sleep ret = set_register(BMX055_MAGN_I2C_REG_PWR_0, 0x01); if(ret < 0){ LOGE("Enabling power failed: %d", ret); goto fail; } util::sleep_for(5); // wait until the chip is powered on // read chip ID ret = read_register(BMX055_MAGN_I2C_REG_ID, buffer, 1); if(ret < 0){ LOGE("Reading chip ID failed: %d", ret); goto fail; } if(buffer[0] != BMX055_MAGN_CHIP_ID){ LOGE("Chip ID wrong. Got: %d, Expected %d", buffer[0], BMX055_MAGN_CHIP_ID); return -1; } // Load magnetometer trim ret = read_register(BMX055_MAGN_I2C_REG_DIG_X1, trim_x1y1, 2); if(ret < 0){ goto fail; } ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z4, trim_xyz_data, 4); if(ret < 0){ goto fail; } ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z2, trim_xy1xy2, 10); if(ret < 0){ goto fail; } // Read trim data trim_data.dig_x1 = (int8_t)trim_x1y1[0]; trim_data.dig_y1 = (int8_t)trim_x1y1[1]; trim_data.dig_x2 = (int8_t)trim_xyz_data[2]; trim_data.dig_y2 = (int8_t)trim_xyz_data[3]; trim_data.dig_z1 = read_16_bit(trim_xy1xy2[2], trim_xy1xy2[3]); trim_data.dig_z2 = read_16_bit(trim_xy1xy2[0], trim_xy1xy2[1]); trim_data.dig_z3 = read_16_bit(trim_xy1xy2[6], trim_xy1xy2[7]); trim_data.dig_z4 = read_16_bit(trim_xyz_data[0], trim_xyz_data[1]); trim_data.dig_xy1 = trim_xy1xy2[9]; trim_data.dig_xy2 = (int8_t)trim_xy1xy2[8]; trim_data.dig_xyz1 = read_16_bit(trim_xy1xy2[4], trim_xy1xy2[5] & 0x7f); // TODO: perform self-test // 9 REPXY and 15 REPZ for 100 Hz // 3 REPXY and 3 REPZ for > 300 Hz ret = set_register(BMX055_MAGN_I2C_REG_REPXY, (3 - 1) / 2); if (ret < 0){ goto fail; } ret = set_register(BMX055_MAGN_I2C_REG_REPZ, 3 - 1); if (ret < 0){ goto fail; } return 0; fail: return ret; } void BMX055_Magn::get_event(cereal::SensorEventData::Builder &event){ uint64_t start_time = nanos_since_boot(); uint8_t buffer[8]; int len = read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer)); assert(len == sizeof(buffer)); bool ready = buffer[6] & 0x1; if (ready){ int16_t x = parse_xy(buffer[0], buffer[1]); int16_t y = parse_xy(buffer[2], buffer[3]); int16_t z = parse_z(buffer[4], buffer[5]); int16_t rhall = parse_rhall(buffer[5], buffer[6]); x = compensate_x(trim_data, x, rhall); y = compensate_y(trim_data, y, rhall); z = compensate_z(trim_data, z, rhall); // TODO: convert to micro tesla: // https://github.com/BoschSensortec/BMM150-Sensor-API/blob/master/bmm150.c#L1614 event.setSource(cereal::SensorEventData::SensorSource::BMX055); event.setVersion(1); event.setSensor(SENSOR_MAGNETOMETER_UNCALIBRATED); event.setType(SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED); event.setTimestamp(start_time); float xyz[] = {(float)x, (float)y, (float)z}; auto svec = event.initMagneticUncalibrated(); svec.setV(xyz); svec.setStatus(true); } // The BMX055 Magnetometer has no FIFO mode. Self running mode only goes // up to 30 Hz. Therefore we put in forced mode, and request measurements // at a 100 Hz. When reading the registers we have to check the ready bit // To verify the measurement was comleted this cycle. set_register(BMX055_MAGN_I2C_REG_MAG, BMX055_MAGN_FORCED); }