from PIL import Image from tinygrad.helpers import getenv import torch, torchvision, pathlib import torchvision.transforms as transforms import extra.torch_backend.backend device = "tiny" torch.set_default_device(device) if __name__ == "__main__": img = Image.open(pathlib.Path(__file__).parent.parent.parent / "test/models/efficientnet/Chicken.jpg").convert('RGB') transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) img = transform(img).unsqueeze(0).to(device) model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) if getenv("EVAL", 1): model.eval() out = model(img).detach().cpu().numpy() print("output:", out.shape, out.argmax()) assert out.argmax() == 7 # cock