#include "selfdrive/camerad/cameras/camera_qcom.h" #include #include #include #include #include #include #include #include #include #include #include #include "selfdrive/camerad/cameras/sensor_i2c.h" #include "selfdrive/camerad/include/msm_cam_sensor.h" #include "selfdrive/camerad/include/msmb_camera.h" #include "selfdrive/camerad/include/msmb_isp.h" #include "selfdrive/camerad/include/msmb_ispif.h" #include "selfdrive/common/clutil.h" #include "selfdrive/common/params.h" #include "selfdrive/common/swaglog.h" #include "selfdrive/common/timing.h" #include "selfdrive/common/util.h" // leeco actuator (DW9800W H-Bridge Driver IC) // from sniff const uint16_t INFINITY_DAC = 364; extern ExitHandler do_exit; static int cam_ioctl(int fd, unsigned long int request, void *arg, const char *log_msg = nullptr) { int err = HANDLE_EINTR(ioctl(fd, request, arg)); if (err != 0 && log_msg) { LOG(util::string_format("%s: %d", log_msg, err).c_str()); } return err; } // global var for AE/AF ops std::atomic road_cam_exp{{0}}; std::atomic driver_cam_exp{{0}}; CameraInfo cameras_supported[CAMERA_ID_MAX] = { [CAMERA_ID_IMX298] = { .frame_width = 2328, .frame_height = 1748, .frame_stride = 2912, .bayer = true, .bayer_flip = 3, .hdr = true }, [CAMERA_ID_OV8865] = { .frame_width = 1632, .frame_height = 1224, .frame_stride = 2040, // seems right .bayer = true, .bayer_flip = 3, .hdr = false }, // this exists to get the kernel to build for the LeEco in release [CAMERA_ID_IMX298_FLIPPED] = { .frame_width = 2328, .frame_height = 1748, .frame_stride = 2912, .bayer = true, .bayer_flip = 3, .hdr = true }, [CAMERA_ID_OV10640] = { .frame_width = 1280, .frame_height = 1080, .frame_stride = 2040, .bayer = true, .bayer_flip = 0, .hdr = true }, }; static void camera_release_buffer(void* cookie, int buf_idx) { CameraState *s = (CameraState *)cookie; // printf("camera_release_buffer %d\n", buf_idx); s->ss[0].qbuf_info[buf_idx].dirty_buf = 1; HANDLE_EINTR(ioctl(s->isp_fd, VIDIOC_MSM_ISP_ENQUEUE_BUF, &s->ss[0].qbuf_info[buf_idx])); } int sensor_write_regs(CameraState *s, struct msm_camera_i2c_reg_array* arr, size_t size, msm_camera_i2c_data_type data_type) { struct msm_camera_i2c_reg_setting out_settings = { .reg_setting = arr, .size = (uint16_t)size, .addr_type = MSM_CAMERA_I2C_WORD_ADDR, .data_type = data_type, .delay = 0, }; sensorb_cfg_data cfg_data = {.cfgtype = CFG_WRITE_I2C_ARRAY, .cfg.setting = &out_settings}; return HANDLE_EINTR(ioctl(s->sensor_fd, VIDIOC_MSM_SENSOR_CFG, &cfg_data)); } static int imx298_apply_exposure(CameraState *s, int gain, int integ_lines, uint32_t frame_length) { int analog_gain = std::min(gain, 448); s->digital_gain = gain > 448 ? (512.0/(512-(gain))) / 8.0 : 1.0; //printf("%5d/%5d %5d %f\n", s->cur_integ_lines, s->frame_length, analog_gain, s->digital_gain); struct msm_camera_i2c_reg_array reg_array[] = { // REG_HOLD {0x104,0x1,0}, {0x3002,0x0,0}, // long autoexposure off // FRM_LENGTH {0x340, (uint16_t)(frame_length >> 8), 0}, {0x341, (uint16_t)(frame_length & 0xff), 0}, // INTEG_TIME aka coarse_int_time_addr aka shutter speed {0x202, (uint16_t)(integ_lines >> 8), 0}, {0x203, (uint16_t)(integ_lines & 0xff),0}, // global_gain_addr // if you assume 1x gain is 32, 448 is 14x gain, aka 2^14=16384 {0x204, (uint16_t)(analog_gain >> 8), 0}, {0x205, (uint16_t)(analog_gain & 0xff),0}, // digital gain for colors: gain_greenR, gain_red, gain_blue, gain_greenB /*{0x20e, digital_gain_gr >> 8, 0}, {0x20f,digital_gain_gr & 0xFF,0}, {0x210, digital_gain_r >> 8, 0}, {0x211,digital_gain_r & 0xFF,0}, {0x212, digital_gain_b >> 8, 0}, {0x213,digital_gain_b & 0xFF,0}, {0x214, digital_gain_gb >> 8, 0}, {0x215,digital_gain_gb & 0xFF,0},*/ // REG_HOLD {0x104,0x0,0}, }; return sensor_write_regs(s, reg_array, std::size(reg_array), MSM_CAMERA_I2C_BYTE_DATA); } static int ov8865_apply_exposure(CameraState *s, int gain, int integ_lines, uint32_t frame_length) { //printf("driver camera: %d %d %d\n", gain, integ_lines, frame_length); int coarse_gain_bitmap, fine_gain_bitmap; // get bitmaps from iso static const int gains[] = {0, 100, 200, 400, 800}; int i; for (i = 1; i < std::size(gains); i++) { if (gain >= gains[i - 1] && gain < gains[i]) break; } int coarse_gain = i - 1; float fine_gain = (gain - gains[coarse_gain])/(float)(gains[coarse_gain+1]-gains[coarse_gain]); coarse_gain_bitmap = (1 << coarse_gain) - 1; fine_gain_bitmap = ((int)(16*fine_gain) << 3) + 128; // 7th is always 1, 0-2nd are always 0 integ_lines *= 16; // The exposure value in reg is in 16ths of a line struct msm_camera_i2c_reg_array reg_array[] = { //{0x104,0x1,0}, // FRM_LENGTH {0x380e, (uint16_t)(frame_length >> 8), 0}, {0x380f, (uint16_t)(frame_length & 0xff), 0}, // AEC EXPO {0x3500, (uint16_t)(integ_lines >> 16), 0}, {0x3501, (uint16_t)(integ_lines >> 8), 0}, {0x3502, (uint16_t)(integ_lines & 0xff),0}, // AEC MANUAL {0x3503, 0x4, 0}, // AEC GAIN {0x3508, (uint16_t)(coarse_gain_bitmap), 0}, {0x3509, (uint16_t)(fine_gain_bitmap), 0}, //{0x104,0x0,0}, }; return sensor_write_regs(s, reg_array, std::size(reg_array), MSM_CAMERA_I2C_BYTE_DATA); } static void camera_init(VisionIpcServer *v, CameraState *s, int camera_id, int camera_num, uint32_t pixel_clock, uint32_t line_length_pclk, uint32_t max_gain, uint32_t fps, cl_device_id device_id, cl_context ctx, VisionStreamType rgb_type, VisionStreamType yuv_type) { s->camera_num = camera_num; s->camera_id = camera_id; assert(camera_id < std::size(cameras_supported)); s->ci = cameras_supported[camera_id]; assert(s->ci.frame_width != 0); s->pixel_clock = pixel_clock; s->max_gain = max_gain; s->fps = fps; s->frame_length = s->pixel_clock / line_length_pclk / s->fps; s->self_recover = 0; s->apply_exposure = (camera_id == CAMERA_ID_IMX298) ? imx298_apply_exposure : ov8865_apply_exposure; s->buf.init(device_id, ctx, s, v, FRAME_BUF_COUNT, rgb_type, yuv_type, camera_release_buffer); } void cameras_init(VisionIpcServer *v, MultiCameraState *s, cl_device_id device_id, cl_context ctx) { char project_name[1024] = {0}; property_get("ro.boot.project_name", project_name, ""); assert(strlen(project_name) == 0); // sensor is flipped in LP3 // IMAGE_ORIENT = 3 init_array_imx298[0].reg_data = 3; // 0 = ISO 100 // 256 = ISO 200 // 384 = ISO 400 // 448 = ISO 800 // 480 = ISO 1600 // 496 = ISO 3200 // 504 = ISO 6400, 8x digital gain // 508 = ISO 12800, 16x digital gain // 510 = ISO 25600, 32x digital gain camera_init(v, &s->road_cam, CAMERA_ID_IMX298, 0, /*pixel_clock=*/600000000, /*line_length_pclk=*/5536, /*max_gain=*/510, //0 (ISO 100)- 448 (ISO 800, max analog gain) - 511 (super noisy) #ifdef HIGH_FPS /*fps*/ 60, #else /*fps*/ 20, #endif device_id, ctx, VISION_STREAM_RGB_BACK, VISION_STREAM_ROAD); camera_init(v, &s->driver_cam, CAMERA_ID_OV8865, 1, /*pixel_clock=*/72000000, /*line_length_pclk=*/1602, /*max_gain=*/510, 10, device_id, ctx, VISION_STREAM_RGB_FRONT, VISION_STREAM_DRIVER); s->sm = new SubMaster({"driverState"}); s->pm = new PubMaster({"roadCameraState", "driverCameraState", "thumbnail"}); for (int i = 0; i < FRAME_BUF_COUNT; i++) { // TODO: make lengths correct s->focus_bufs[i].allocate(0xb80); s->stats_bufs[i].allocate(0xb80); } std::fill_n(s->lapres, std::size(s->lapres), 16160); s->lap_conv = new LapConv(device_id, ctx, s->road_cam.buf.rgb_width, s->road_cam.buf.rgb_height, s->road_cam.buf.rgb_stride, 3); } static void set_exposure(CameraState *s, float exposure_frac, float gain_frac) { int err = 0; uint32_t gain = s->cur_gain; uint32_t integ_lines = s->cur_integ_lines; if (exposure_frac >= 0) { exposure_frac = std::clamp(exposure_frac, 2.0f / s->frame_length, 1.0f); integ_lines = s->frame_length * exposure_frac; // See page 79 of the datasheet, this is the max allowed (-1 for phase adjust) integ_lines = std::min(integ_lines, s->frame_length - 11); } if (gain_frac >= 0) { // ISO200 is minimum gain gain_frac = std::clamp(gain_frac, 1.0f/64, 1.0f); // linearize gain response // TODO: will be wrong for driver camera // 0.125 -> 448 // 0.25 -> 480 // 0.5 -> 496 // 1.0 -> 504 // 512 - 512/(128*gain_frac) gain = (s->max_gain/510) * (512 - 512/(256*gain_frac)); } if (gain != s->cur_gain || integ_lines != s->cur_integ_lines) { if (s->apply_exposure == ov8865_apply_exposure) { gain = 800 * gain_frac; // ISO } err = s->apply_exposure(s, gain, integ_lines, s->frame_length); if (err == 0) { std::lock_guard lk(s->frame_info_lock); s->cur_gain = gain; s->cur_integ_lines = integ_lines; } else { LOGE("camera %d apply_exposure err: %d", s->camera_num, err); } } if (err == 0) { s->cur_exposure_frac = exposure_frac; std::lock_guard lk(s->frame_info_lock); s->cur_gain_frac = gain_frac; } //LOGD("set exposure: %f %f - %d", exposure_frac, gain_frac, err); } static void do_autoexposure(CameraState *s, float grey_frac) { const float target_grey = 0.3; s->frame_info_lock.lock(); s->measured_grey_fraction = grey_frac; s->target_grey_fraction = target_grey; s->frame_info_lock.unlock(); if (s->apply_exposure == ov8865_apply_exposure) { // gain limits downstream const float gain_frac_min = 0.015625; const float gain_frac_max = 1.0; // exposure time limits const uint32_t exposure_time_min = 16; const uint32_t exposure_time_max = s->frame_length - 11; // copied from set_exposure() float cur_gain_frac = s->cur_gain_frac; float exposure_factor = pow(1.05, (target_grey - grey_frac) / 0.05); if (cur_gain_frac > 0.125 && exposure_factor < 1) { cur_gain_frac *= exposure_factor; } else if (s->cur_integ_lines * exposure_factor <= exposure_time_max && s->cur_integ_lines * exposure_factor >= exposure_time_min) { // adjust exposure time first s->cur_exposure_frac *= exposure_factor; } else if (cur_gain_frac * exposure_factor <= gain_frac_max && cur_gain_frac * exposure_factor >= gain_frac_min) { cur_gain_frac *= exposure_factor; } s->frame_info_lock.lock(); s->cur_gain_frac = cur_gain_frac; s->frame_info_lock.unlock(); set_exposure(s, s->cur_exposure_frac, cur_gain_frac); } else { // keep the old for others float new_exposure = s->cur_exposure_frac; new_exposure *= pow(1.05, (target_grey - grey_frac) / 0.05 ); //LOGD("diff %f: %f to %f", target_grey - grey_frac, s->cur_exposure_frac, new_exposure); float new_gain = s->cur_gain_frac; if (new_exposure < 0.10) { new_gain *= 0.95; } else if (new_exposure > 0.40) { new_gain *= 1.05; } set_exposure(s, new_exposure, new_gain); } } static void sensors_init(MultiCameraState *s) { msm_camera_sensor_slave_info slave_infos[2] = { (msm_camera_sensor_slave_info){ // road camera .sensor_name = "imx298", .eeprom_name = "sony_imx298", .actuator_name = "dw9800w", .ois_name = "", .flash_name = "pmic", .camera_id = CAMERA_0, .slave_addr = 32, .i2c_freq_mode = I2C_FAST_MODE, .addr_type = MSM_CAMERA_I2C_WORD_ADDR, .sensor_id_info = {.sensor_id_reg_addr = 22, .sensor_id = 664, .module_id = 9, .vcm_id = 6}, .power_setting_array = { .power_setting_a = { {.seq_type = SENSOR_GPIO, .delay = 1}, {.seq_type = SENSOR_VREG, .seq_val = 2}, {.seq_type = SENSOR_GPIO, .seq_val = 5, .config_val = 2}, {.seq_type = SENSOR_VREG, .seq_val = 1}, {.seq_type = SENSOR_VREG, .seq_val = 3, .delay = 1}, {.seq_type = SENSOR_CLK, .config_val = 24000000, .delay = 1}, {.seq_type = SENSOR_GPIO, .config_val = 2, .delay = 10}, }, .size = 7, .power_down_setting_a = { {.seq_type = SENSOR_CLK, .delay = 1}, {.seq_type = SENSOR_GPIO, .delay = 1}, {.seq_type = SENSOR_VREG, .seq_val = 1}, {.seq_type = SENSOR_GPIO, .seq_val = 5}, {.seq_type = SENSOR_VREG, .seq_val = 2}, {.seq_type = SENSOR_VREG, .seq_val = 3, .delay = 1}, }, .size_down = 6, }, .is_init_params_valid = 0, .sensor_init_params = {.modes_supported = 1, .position = BACK_CAMERA_B, .sensor_mount_angle = 90}, .output_format = MSM_SENSOR_BAYER, }, (msm_camera_sensor_slave_info){ // driver camera .sensor_name = "ov8865_sunny", .eeprom_name = "ov8865_plus", .actuator_name = "", .ois_name = "", .flash_name = "", .camera_id = CAMERA_2, .slave_addr = 108, .i2c_freq_mode = I2C_FAST_MODE, .addr_type = MSM_CAMERA_I2C_WORD_ADDR, .sensor_id_info = {.sensor_id_reg_addr = 12299, .sensor_id = 34917, .module_id = 2}, .power_setting_array = { .power_setting_a = { {.seq_type = SENSOR_GPIO, .delay = 5}, {.seq_type = SENSOR_VREG, .seq_val = 1}, {.seq_type = SENSOR_VREG, .seq_val = 2}, {.seq_type = SENSOR_VREG}, {.seq_type = SENSOR_CLK, .config_val = 24000000, .delay = 1}, {.seq_type = SENSOR_GPIO, .config_val = 2, .delay = 1}, }, .size = 6, .power_down_setting_a = { {.seq_type = SENSOR_GPIO, .delay = 5}, {.seq_type = SENSOR_CLK, .delay = 1}, {.seq_type = SENSOR_VREG}, {.seq_type = SENSOR_VREG, .seq_val = 1}, {.seq_type = SENSOR_VREG, .seq_val = 2, .delay = 1}, }, .size_down = 5, }, .is_init_params_valid = 0, .sensor_init_params = {.modes_supported = 1, .position = FRONT_CAMERA_B, .sensor_mount_angle = 270}, .output_format = MSM_SENSOR_BAYER, }}; unique_fd sensorinit_fd = HANDLE_EINTR(open("/dev/v4l-subdev11", O_RDWR | O_NONBLOCK)); assert(sensorinit_fd >= 0); for (auto &info : slave_infos) { info.power_setting_array.power_setting = &info.power_setting_array.power_setting_a[0]; info.power_setting_array.power_down_setting = &info.power_setting_array.power_down_setting_a[0]; sensor_init_cfg_data sensor_init_cfg = {.cfgtype = CFG_SINIT_PROBE, .cfg.setting = &info}; int err = cam_ioctl(sensorinit_fd, VIDIOC_MSM_SENSOR_INIT_CFG, &sensor_init_cfg, "sensor init cfg"); assert(err >= 0); } } static void camera_open(CameraState *s, bool is_road_cam) { struct csid_cfg_data csid_cfg_data = {}; struct v4l2_event_subscription sub = {}; struct msm_actuator_cfg_data actuator_cfg_data = {}; // open devices const char *sensor_dev; if (is_road_cam) { s->csid_fd = HANDLE_EINTR(open("/dev/v4l-subdev3", O_RDWR | O_NONBLOCK)); assert(s->csid_fd >= 0); s->csiphy_fd = HANDLE_EINTR(open("/dev/v4l-subdev0", O_RDWR | O_NONBLOCK)); assert(s->csiphy_fd >= 0); sensor_dev = "/dev/v4l-subdev17"; s->isp_fd = HANDLE_EINTR(open("/dev/v4l-subdev13", O_RDWR | O_NONBLOCK)); assert(s->isp_fd >= 0); s->actuator_fd = HANDLE_EINTR(open("/dev/v4l-subdev7", O_RDWR | O_NONBLOCK)); assert(s->actuator_fd >= 0); } else { s->csid_fd = HANDLE_EINTR(open("/dev/v4l-subdev5", O_RDWR | O_NONBLOCK)); assert(s->csid_fd >= 0); s->csiphy_fd = HANDLE_EINTR(open("/dev/v4l-subdev2", O_RDWR | O_NONBLOCK)); assert(s->csiphy_fd >= 0); sensor_dev = "/dev/v4l-subdev18"; s->isp_fd = HANDLE_EINTR(open("/dev/v4l-subdev14", O_RDWR | O_NONBLOCK)); assert(s->isp_fd >= 0); } // wait for sensor device // on first startup, these devices aren't present yet for (int i = 0; i < 10; i++) { s->sensor_fd = HANDLE_EINTR(open(sensor_dev, O_RDWR | O_NONBLOCK)); if (s->sensor_fd >= 0) break; LOGW("waiting for sensors..."); util::sleep_for(1000); // sleep one second } assert(s->sensor_fd >= 0); // *** SHUTDOWN ALL *** // CSIPHY: release csiphy struct msm_camera_csi_lane_params csi_lane_params = {0}; csi_lane_params.csi_lane_mask = 0x1f; csiphy_cfg_data csiphy_cfg_data = { .cfg.csi_lane_params = &csi_lane_params, .cfgtype = CSIPHY_RELEASE}; int err = cam_ioctl(s->csiphy_fd, VIDIOC_MSM_CSIPHY_IO_CFG, &csiphy_cfg_data, "release csiphy"); // CSID: release csid csid_cfg_data.cfgtype = CSID_RELEASE; cam_ioctl(s->csid_fd, VIDIOC_MSM_CSID_IO_CFG, &csid_cfg_data, "release csid"); // SENSOR: send power down struct sensorb_cfg_data sensorb_cfg_data = {.cfgtype = CFG_POWER_DOWN}; cam_ioctl(s->sensor_fd, VIDIOC_MSM_SENSOR_CFG, &sensorb_cfg_data, "sensor power down"); // actuator powerdown actuator_cfg_data.cfgtype = CFG_ACTUATOR_POWERDOWN; cam_ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data, "actuator powerdown"); // reset isp // struct msm_vfe_axi_halt_cmd halt_cmd = { // .stop_camif = 1, // .overflow_detected = 1, // .blocking_halt = 1, // }; // err = ioctl(s->isp_fd, VIDIOC_MSM_ISP_AXI_HALT, &halt_cmd); // printf("axi halt: %d\n", err); // struct msm_vfe_axi_reset_cmd reset_cmd = { // .blocking = 1, // .frame_id = 1, // }; // err = ioctl(s->isp_fd, VIDIOC_MSM_ISP_AXI_RESET, &reset_cmd); // printf("axi reset: %d\n", err); // struct msm_vfe_axi_restart_cmd restart_cmd = { // .enable_camif = 1, // }; // err = ioctl(s->isp_fd, VIDIOC_MSM_ISP_AXI_RESTART, &restart_cmd); // printf("axi restart: %d\n", err); // **** GO GO GO **** LOG("******************** GO GO GO ************************"); // CSID: init csid csid_cfg_data.cfgtype = CSID_INIT; cam_ioctl(s->csid_fd, VIDIOC_MSM_CSID_IO_CFG, &csid_cfg_data, "init csid"); // CSIPHY: init csiphy csiphy_cfg_data = {.cfgtype = CSIPHY_INIT}; cam_ioctl(s->csiphy_fd, VIDIOC_MSM_CSIPHY_IO_CFG, &csiphy_cfg_data, "init csiphy"); // SENSOR: stop stream struct msm_camera_i2c_reg_setting stop_settings = { .reg_setting = stop_reg_array, .size = std::size(stop_reg_array), .addr_type = MSM_CAMERA_I2C_WORD_ADDR, .data_type = MSM_CAMERA_I2C_BYTE_DATA, .delay = 0 }; sensorb_cfg_data.cfgtype = CFG_SET_STOP_STREAM_SETTING; sensorb_cfg_data.cfg.setting = &stop_settings; cam_ioctl(s->sensor_fd, VIDIOC_MSM_SENSOR_CFG, &sensorb_cfg_data, "stop stream"); // SENSOR: send power up sensorb_cfg_data = {.cfgtype = CFG_POWER_UP}; cam_ioctl(s->sensor_fd, VIDIOC_MSM_SENSOR_CFG, &sensorb_cfg_data, "sensor power up"); // **** configure the sensor **** // SENSOR: send i2c configuration if (s->camera_id == CAMERA_ID_IMX298) { err = sensor_write_regs(s, init_array_imx298, std::size(init_array_imx298), MSM_CAMERA_I2C_BYTE_DATA); } else if (s->camera_id == CAMERA_ID_OV8865) { err = sensor_write_regs(s, init_array_ov8865, std::size(init_array_ov8865), MSM_CAMERA_I2C_BYTE_DATA); } else { assert(false); } LOG("sensor init i2c: %d", err); if (is_road_cam) { // init the actuator actuator_cfg_data.cfgtype = CFG_ACTUATOR_POWERUP; cam_ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data, "actuator powerup"); actuator_cfg_data.cfgtype = CFG_ACTUATOR_INIT; cam_ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data, "actuator init"); struct msm_actuator_reg_params_t actuator_reg_params[] = { { .reg_write_type = MSM_ACTUATOR_WRITE_DAC, // MSB here at address 3 .reg_addr = 3, .data_type = 9, .addr_type = 4, }, }; struct reg_settings_t actuator_init_settings[] = { { .reg_addr=2, .addr_type=MSM_ACTUATOR_BYTE_ADDR, .reg_data=1, .data_type = MSM_ACTUATOR_BYTE_DATA, .i2c_operation = MSM_ACT_WRITE, .delay = 0 }, // PD = power down { .reg_addr=2, .addr_type=MSM_ACTUATOR_BYTE_ADDR, .reg_data=0, .data_type = MSM_ACTUATOR_BYTE_DATA, .i2c_operation = MSM_ACT_WRITE, .delay = 2 }, // 0 = power up { .reg_addr=2, .addr_type=MSM_ACTUATOR_BYTE_ADDR, .reg_data=2, .data_type = MSM_ACTUATOR_BYTE_DATA, .i2c_operation = MSM_ACT_WRITE, .delay = 2 }, // RING = SAC mode { .reg_addr=6, .addr_type=MSM_ACTUATOR_BYTE_ADDR, .reg_data=64, .data_type = MSM_ACTUATOR_BYTE_DATA, .i2c_operation = MSM_ACT_WRITE, .delay = 0 }, // 0x40 = SAC3 mode { .reg_addr=7, .addr_type=MSM_ACTUATOR_BYTE_ADDR, .reg_data=113, .data_type = MSM_ACTUATOR_BYTE_DATA, .i2c_operation = MSM_ACT_WRITE, .delay = 0 }, // 0x71 = DIV1 | DIV0 | SACT0 -- Tvib x 1/4 (quarter) // SAC Tvib = 6.3 ms + 0.1 ms = 6.4 ms / 4 = 1.6 ms // LSC 1-step = 252 + 1*4 = 256 ms / 4 = 64 ms }; struct region_params_t region_params[] = { {.step_bound = {238, 0,}, .code_per_step = 235, .qvalue = 128} }; actuator_cfg_data.cfgtype = CFG_SET_ACTUATOR_INFO; actuator_cfg_data.cfg.set_info = (struct msm_actuator_set_info_t){ .actuator_params = { .act_type = ACTUATOR_BIVCM, .reg_tbl_size = 1, .data_size = 10, .init_setting_size = 5, .i2c_freq_mode = I2C_STANDARD_MODE, .i2c_addr = 24, .i2c_addr_type = MSM_ACTUATOR_BYTE_ADDR, .i2c_data_type = MSM_ACTUATOR_WORD_DATA, .reg_tbl_params = &actuator_reg_params[0], .init_settings = &actuator_init_settings[0], .park_lens = {.damping_step = 1023, .damping_delay = 14000, .hw_params = 11, .max_step = 20}, }, .af_tuning_params = { .initial_code = INFINITY_DAC, .pwd_step = 0, .region_size = 1, .total_steps = 238, .region_params = ®ion_params[0], }, }; cam_ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data, "actuator set info"); } if (s->camera_id == CAMERA_ID_IMX298) { err = sensor_write_regs(s, mode_setting_array_imx298, std::size(mode_setting_array_imx298), MSM_CAMERA_I2C_BYTE_DATA); LOG("sensor setup: %d", err); } // CSIPHY: configure csiphy struct msm_camera_csiphy_params csiphy_params = {}; if (s->camera_id == CAMERA_ID_IMX298) { csiphy_params = {.lane_cnt = 4, .settle_cnt = 14, .lane_mask = 0x1f, .csid_core = 0}; } else if (s->camera_id == CAMERA_ID_OV8865) { // guess! csiphy_params = {.lane_cnt = 4, .settle_cnt = 24, .lane_mask = 0x1f, .csid_core = 2}; } csiphy_cfg_data.cfgtype = CSIPHY_CFG; csiphy_cfg_data.cfg.csiphy_params = &csiphy_params; cam_ioctl(s->csiphy_fd, VIDIOC_MSM_CSIPHY_IO_CFG, &csiphy_cfg_data, "csiphy configure"); // CSID: configure csid #define CSI_STATS 0x35 #define CSI_PD 0x36 struct msm_camera_csid_params csid_params = { .lane_cnt = 4, .lane_assign = 0x4320, .phy_sel = (uint8_t)(is_road_cam ? 0 : 2), .lut_params.num_cid = (uint8_t)(is_road_cam ? 3 : 1), .lut_params.vc_cfg_a = { {.cid = 0, .dt = CSI_RAW10, .decode_format = CSI_DECODE_10BIT}, {.cid = 1, .dt = CSI_PD, .decode_format = CSI_DECODE_10BIT}, {.cid = 2, .dt = CSI_STATS, .decode_format = CSI_DECODE_10BIT}, }, }; csid_params.lut_params.vc_cfg[0] = &csid_params.lut_params.vc_cfg_a[0]; csid_params.lut_params.vc_cfg[1] = &csid_params.lut_params.vc_cfg_a[1]; csid_params.lut_params.vc_cfg[2] = &csid_params.lut_params.vc_cfg_a[2]; csid_cfg_data.cfgtype = CSID_CFG; csid_cfg_data.cfg.csid_params = &csid_params; cam_ioctl(s->csid_fd, VIDIOC_MSM_CSID_IO_CFG, &csid_cfg_data, "csid configure"); // ISP: SMMU_ATTACH msm_vfe_smmu_attach_cmd smmu_attach_cmd = {.security_mode = 0, .iommu_attach_mode = IOMMU_ATTACH}; cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_SMMU_ATTACH, &smmu_attach_cmd, "isp smmu attach"); // ******************* STREAM RAW ***************************** // configure QMET input struct msm_vfe_input_cfg input_cfg = {}; for (int i = 0; i < (is_road_cam ? 3 : 1); i++) { StreamState *ss = &s->ss[i]; memset(&input_cfg, 0, sizeof(struct msm_vfe_input_cfg)); input_cfg.input_src = (msm_vfe_input_src)(VFE_RAW_0+i); input_cfg.input_pix_clk = s->pixel_clock; input_cfg.d.rdi_cfg.cid = i; input_cfg.d.rdi_cfg.frame_based = 1; err = ioctl(s->isp_fd, VIDIOC_MSM_ISP_INPUT_CFG, &input_cfg); LOG("configure input(%d): %d", i, err); // ISP: REQUEST_STREAM ss->stream_req.axi_stream_handle = 0; if (is_road_cam) { ss->stream_req.session_id = 2; ss->stream_req.stream_id = /*ISP_META_CHANNEL_BIT | */ISP_NATIVE_BUF_BIT | (1+i); } else { ss->stream_req.session_id = 3; ss->stream_req.stream_id = ISP_NATIVE_BUF_BIT | 1; } if (i == 0) { ss->stream_req.output_format = v4l2_fourcc('R', 'G', '1', '0'); } else { ss->stream_req.output_format = v4l2_fourcc('Q', 'M', 'E', 'T'); } ss->stream_req.stream_src = (msm_vfe_axi_stream_src)(RDI_INTF_0+i); #ifdef HIGH_FPS if (is_road_cam) { ss->stream_req.frame_skip_pattern = EVERY_3FRAME; } #endif ss->stream_req.frame_base = 1; ss->stream_req.buf_divert = 1; //i == 0; // setup stream plane. doesn't even matter? /*s->stream_req.plane_cfg[0].output_plane_format = Y_PLANE; s->stream_req.plane_cfg[0].output_width = s->ci.frame_width; s->stream_req.plane_cfg[0].output_height = s->ci.frame_height; s->stream_req.plane_cfg[0].output_stride = s->ci.frame_width; s->stream_req.plane_cfg[0].output_scan_lines = s->ci.frame_height; s->stream_req.plane_cfg[0].rdi_cid = 0;*/ err = ioctl(s->isp_fd, VIDIOC_MSM_ISP_REQUEST_STREAM, &ss->stream_req); LOG("isp request stream: %d -> 0x%x", err, ss->stream_req.axi_stream_handle); // ISP: REQUEST_BUF ss->buf_request.session_id = ss->stream_req.session_id; ss->buf_request.stream_id = ss->stream_req.stream_id; ss->buf_request.num_buf = FRAME_BUF_COUNT; ss->buf_request.buf_type = ISP_PRIVATE_BUF; ss->buf_request.handle = 0; cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_REQUEST_BUF, &ss->buf_request, "isp request buf"); LOG("got buf handle: 0x%x", ss->buf_request.handle); // ENQUEUE all buffers for (int j = 0; j < ss->buf_request.num_buf; j++) { ss->qbuf_info[j].handle = ss->buf_request.handle; ss->qbuf_info[j].buf_idx = j; ss->qbuf_info[j].buffer.num_planes = 1; ss->qbuf_info[j].buffer.planes[0].addr = ss->bufs[j].fd; ss->qbuf_info[j].buffer.planes[0].length = ss->bufs[j].len; err = ioctl(s->isp_fd, VIDIOC_MSM_ISP_ENQUEUE_BUF, &ss->qbuf_info[j]); } // ISP: UPDATE_STREAM struct msm_vfe_axi_stream_update_cmd update_cmd = {}; update_cmd.num_streams = 1; update_cmd.update_info[0].user_stream_id = ss->stream_req.stream_id; update_cmd.update_info[0].stream_handle = ss->stream_req.axi_stream_handle; update_cmd.update_type = UPDATE_STREAM_ADD_BUFQ; cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_UPDATE_STREAM, &update_cmd, "isp update stream"); } LOG("******** START STREAMS ********"); sub.id = 0; sub.type = 0x1ff; cam_ioctl(s->isp_fd, VIDIOC_SUBSCRIBE_EVENT, &sub, "isp subscribe"); // ISP: START_STREAM s->stream_cfg.cmd = START_STREAM; s->stream_cfg.num_streams = is_road_cam ? 3 : 1; for (int i = 0; i < s->stream_cfg.num_streams; i++) { s->stream_cfg.stream_handle[i] = s->ss[i].stream_req.axi_stream_handle; } cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_CFG_STREAM, &s->stream_cfg, "isp start stream"); } static void road_camera_start(CameraState *s) { set_exposure(s, 1.0, 1.0); int err = sensor_write_regs(s, start_reg_array, std::size(start_reg_array), MSM_CAMERA_I2C_BYTE_DATA); LOG("sensor start regs: %d", err); int inf_step = 512 - INFINITY_DAC; // initial guess s->lens_true_pos = 400; // reset lens position struct msm_actuator_cfg_data actuator_cfg_data = {}; actuator_cfg_data.cfgtype = CFG_SET_POSITION; actuator_cfg_data.cfg.setpos = (struct msm_actuator_set_position_t){ .number_of_steps = 1, .hw_params = (uint32_t)7, .pos = {INFINITY_DAC, 0}, .delay = {0,} }; cam_ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data, "actuator set pos"); // TODO: confirm this isn't needed /*memset(&actuator_cfg_data, 0, sizeof(actuator_cfg_data)); actuator_cfg_data.cfgtype = CFG_MOVE_FOCUS; actuator_cfg_data.cfg.move = (struct msm_actuator_move_params_t){ .dir = 0, .sign_dir = 1, .dest_step_pos = inf_step, .num_steps = inf_step, .curr_lens_pos = 0, .ringing_params = &actuator_ringing_params, }; err = ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data); // should be ~332 at startup ? LOG("init actuator move focus: %d", err);*/ //actuator_cfg_data.cfg.move.curr_lens_pos; s->cur_lens_pos = 0; s->cur_step_pos = inf_step; actuator_move(s, s->cur_lens_pos); LOG("init lens pos: %d", s->cur_lens_pos); } void actuator_move(CameraState *s, uint16_t target) { // LP3 moves only on even positions. TODO: use proper sensor params // focus on infinity assuming phone is perpendicular static struct damping_params_t actuator_ringing_params = { .damping_step = 1023, .damping_delay = 20000, .hw_params = 13, }; int step = (target - s->cur_lens_pos) / 2; int dest_step_pos = s->cur_step_pos + step; dest_step_pos = std::clamp(dest_step_pos, 0, 255); struct msm_actuator_cfg_data actuator_cfg_data = {0}; actuator_cfg_data.cfgtype = CFG_MOVE_FOCUS; actuator_cfg_data.cfg.move = (struct msm_actuator_move_params_t){ .dir = (int8_t)((step > 0) ? MOVE_NEAR : MOVE_FAR), .sign_dir = (int8_t)((step > 0) ? MSM_ACTUATOR_MOVE_SIGNED_NEAR : MSM_ACTUATOR_MOVE_SIGNED_FAR), .dest_step_pos = (int16_t)dest_step_pos, .num_steps = abs(step), .curr_lens_pos = s->cur_lens_pos, .ringing_params = &actuator_ringing_params, }; HANDLE_EINTR(ioctl(s->actuator_fd, VIDIOC_MSM_ACTUATOR_CFG, &actuator_cfg_data)); s->cur_step_pos = dest_step_pos; s->cur_lens_pos = actuator_cfg_data.cfg.move.curr_lens_pos; //LOGD("step %d target: %d lens pos: %d", dest_step_pos, target, s->cur_lens_pos); } static void parse_autofocus(CameraState *s, uint8_t *d) { int good_count = 0; int16_t max_focus = -32767; int avg_focus = 0; /*printf("FOCUS: "); for (int i = 0; i < 0x10; i++) { printf("%2.2X ", d[i]); }*/ for (int i = 0; i < NUM_FOCUS; i++) { int doff = i*5+5; s->confidence[i] = d[doff]; // this should just be a 10-bit signed int instead of 11 // TODO: write it in a nicer way int16_t focus_t = (d[doff+1] << 3) | (d[doff+2] >> 5); if (focus_t >= 1024) focus_t = -(2048-focus_t); s->focus[i] = focus_t; //printf("%x->%d ", d[doff], focus_t); if (s->confidence[i] > 0x20) { good_count++; max_focus = std::max(max_focus, s->focus[i]); avg_focus += s->focus[i]; } } // self recover override if (s->self_recover > 1) { s->focus_err = 200 * ((s->self_recover % 2 == 0) ? 1:-1); // far for even numbers, close for odd s->self_recover -= 2; return; } if (good_count < 4) { s->focus_err = nan(""); return; } avg_focus /= good_count; // outlier rejection if (abs(avg_focus - max_focus) > 200) { s->focus_err = nan(""); return; } s->focus_err = max_focus*1.0; } static void do_autofocus(CameraState *s) { float lens_true_pos = s->lens_true_pos.load(); if (!isnan(s->focus_err)) { // learn lens_true_pos const float focus_kp = 0.005; lens_true_pos -= s->focus_err*focus_kp; } // stay off the walls lens_true_pos = std::clamp(lens_true_pos, float(LP3_AF_DAC_DOWN), float(LP3_AF_DAC_UP)); s->lens_true_pos.store(lens_true_pos); actuator_move(s, lens_true_pos); } void camera_autoexposure(CameraState *s, float grey_frac) { if (s->camera_num == 0) { CameraExpInfo tmp = road_cam_exp.load(); tmp.op_id++; tmp.grey_frac = grey_frac; road_cam_exp.store(tmp); } else { CameraExpInfo tmp = driver_cam_exp.load(); tmp.op_id++; tmp.grey_frac = grey_frac; driver_cam_exp.store(tmp); } } static void driver_camera_start(CameraState *s) { set_exposure(s, 1.0, 1.0); int err = sensor_write_regs(s, start_reg_array, std::size(start_reg_array), MSM_CAMERA_I2C_BYTE_DATA); LOG("sensor start regs: %d", err); } void cameras_open(MultiCameraState *s) { struct msm_ispif_param_data ispif_params = { .num = 4, .entries = { // road camera {.vfe_intf = VFE0, .intftype = RDI0, .num_cids = 1, .cids[0] = CID0, .csid = CSID0}, // driver camera {.vfe_intf = VFE1, .intftype = RDI0, .num_cids = 1, .cids[0] = CID0, .csid = CSID2}, // road camera (focus) {.vfe_intf = VFE0, .intftype = RDI1, .num_cids = 1, .cids[0] = CID1, .csid = CSID0}, // road camera (stats, for AE) {.vfe_intf = VFE0, .intftype = RDI2, .num_cids = 1, .cids[0] = CID2, .csid = CSID0}, }, }; s->msmcfg_fd = HANDLE_EINTR(open("/dev/media0", O_RDWR | O_NONBLOCK)); assert(s->msmcfg_fd >= 0); sensors_init(s); s->v4l_fd = HANDLE_EINTR(open("/dev/video0", O_RDWR | O_NONBLOCK)); assert(s->v4l_fd >= 0); s->ispif_fd = HANDLE_EINTR(open("/dev/v4l-subdev15", O_RDWR | O_NONBLOCK)); assert(s->ispif_fd >= 0); // ISPIF: stop // memset(&ispif_cfg_data, 0, sizeof(ispif_cfg_data)); // ispif_cfg_data.cfg_type = ISPIF_STOP_FRAME_BOUNDARY; // ispif_cfg_data.params = ispif_params; // err = ioctl(s->ispif_fd, VIDIOC_MSM_ISPIF_CFG, &ispif_cfg_data); // LOG("ispif stop: %d", err); LOG("*** open driver camera ***"); s->driver_cam.ss[0].bufs = s->driver_cam.buf.camera_bufs.get(); camera_open(&s->driver_cam, false); LOG("*** open road camera ***"); s->road_cam.ss[0].bufs = s->road_cam.buf.camera_bufs.get(); s->road_cam.ss[1].bufs = s->focus_bufs; s->road_cam.ss[2].bufs = s->stats_bufs; camera_open(&s->road_cam, true); if (getenv("CAMERA_TEST")) { cameras_close(s); exit(0); } // ISPIF: set vfe info struct ispif_cfg_data ispif_cfg_data = {.cfg_type = ISPIF_SET_VFE_INFO, .vfe_info.num_vfe = 2}; int err = HANDLE_EINTR(ioctl(s->ispif_fd, VIDIOC_MSM_ISPIF_CFG, &ispif_cfg_data)); LOG("ispif set vfe info: %d", err); // ISPIF: setup ispif_cfg_data = {.cfg_type = ISPIF_INIT, .csid_version = 0x30050000 /* CSID_VERSION_V35*/}; cam_ioctl(s->ispif_fd, VIDIOC_MSM_ISPIF_CFG, &ispif_cfg_data, "ispif setup"); ispif_cfg_data = {.cfg_type = ISPIF_CFG, .params = ispif_params}; cam_ioctl(s->ispif_fd, VIDIOC_MSM_ISPIF_CFG, &ispif_cfg_data, "ispif cfg"); ispif_cfg_data.cfg_type = ISPIF_START_FRAME_BOUNDARY; cam_ioctl(s->ispif_fd, VIDIOC_MSM_ISPIF_CFG, &ispif_cfg_data, "ispif start_frame_boundary"); driver_camera_start(&s->driver_cam); road_camera_start(&s->road_cam); } static void camera_close(CameraState *s) { // ISP: STOP_STREAM s->stream_cfg.cmd = STOP_STREAM; cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_CFG_STREAM, &s->stream_cfg, "isp stop stream"); for (int i = 0; i < 3; i++) { StreamState *ss = &s->ss[i]; if (ss->stream_req.axi_stream_handle != 0) { cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_RELEASE_BUF, &ss->buf_request, "isp release buf"); struct msm_vfe_axi_stream_release_cmd stream_release = { .stream_handle = ss->stream_req.axi_stream_handle, }; cam_ioctl(s->isp_fd, VIDIOC_MSM_ISP_RELEASE_STREAM, &stream_release, "isp release stream"); } } } const char* get_isp_event_name(uint32_t type) { switch (type) { case ISP_EVENT_REG_UPDATE: return "ISP_EVENT_REG_UPDATE"; case ISP_EVENT_EPOCH_0: return "ISP_EVENT_EPOCH_0"; case ISP_EVENT_EPOCH_1: return "ISP_EVENT_EPOCH_1"; case ISP_EVENT_START_ACK: return "ISP_EVENT_START_ACK"; case ISP_EVENT_STOP_ACK: return "ISP_EVENT_STOP_ACK"; case ISP_EVENT_IRQ_VIOLATION: return "ISP_EVENT_IRQ_VIOLATION"; case ISP_EVENT_STATS_OVERFLOW: return "ISP_EVENT_STATS_OVERFLOW"; case ISP_EVENT_ERROR: return "ISP_EVENT_ERROR"; case ISP_EVENT_SOF: return "ISP_EVENT_SOF"; case ISP_EVENT_EOF: return "ISP_EVENT_EOF"; case ISP_EVENT_BUF_DONE: return "ISP_EVENT_BUF_DONE"; case ISP_EVENT_BUF_DIVERT: return "ISP_EVENT_BUF_DIVERT"; case ISP_EVENT_STATS_NOTIFY: return "ISP_EVENT_STATS_NOTIFY"; case ISP_EVENT_COMP_STATS_NOTIFY: return "ISP_EVENT_COMP_STATS_NOTIFY"; case ISP_EVENT_FE_READ_DONE: return "ISP_EVENT_FE_READ_DONE"; case ISP_EVENT_IOMMU_P_FAULT: return "ISP_EVENT_IOMMU_P_FAULT"; case ISP_EVENT_HW_FATAL_ERROR: return "ISP_EVENT_HW_FATAL_ERROR"; case ISP_EVENT_PING_PONG_MISMATCH: return "ISP_EVENT_PING_PONG_MISMATCH"; case ISP_EVENT_REG_UPDATE_MISSING: return "ISP_EVENT_REG_UPDATE_MISSING"; case ISP_EVENT_BUF_FATAL_ERROR: return "ISP_EVENT_BUF_FATAL_ERROR"; case ISP_EVENT_STREAM_UPDATE_DONE: return "ISP_EVENT_STREAM_UPDATE_DONE"; default: return "unknown"; } } static FrameMetadata get_frame_metadata(CameraState *s, uint32_t frame_id) { std::lock_guard lk(s->frame_info_lock); for (auto &i : s->frame_metadata) { if (i.frame_id == frame_id) { return i; } } // should never happen return (FrameMetadata){ .frame_id = (uint32_t)-1, }; } static void ops_thread(MultiCameraState *s) { int last_road_cam_op_id = 0; int last_driver_cam_op_id = 0; CameraExpInfo road_cam_op; CameraExpInfo driver_cam_op; util::set_thread_name("camera_settings"); while(!do_exit) { road_cam_op = road_cam_exp.load(); if (road_cam_op.op_id != last_road_cam_op_id) { do_autoexposure(&s->road_cam, road_cam_op.grey_frac); do_autofocus(&s->road_cam); last_road_cam_op_id = road_cam_op.op_id; } driver_cam_op = driver_cam_exp.load(); if (driver_cam_op.op_id != last_driver_cam_op_id) { do_autoexposure(&s->driver_cam, driver_cam_op.grey_frac); last_driver_cam_op_id = driver_cam_op.op_id; } util::sleep_for(50); } } static void setup_self_recover(CameraState *c, const uint16_t *lapres, size_t lapres_size) { const float lens_true_pos = c->lens_true_pos.load(); int self_recover = c->self_recover.load(); if (self_recover < 2 && (lens_true_pos < (LP3_AF_DAC_DOWN + 1) || lens_true_pos > (LP3_AF_DAC_UP - 1)) && is_blur(lapres, lapres_size)) { // truly stuck, needs help if (--self_recover < -FOCUS_RECOVER_PATIENCE) { LOGD("road camera bad state detected. attempting recovery from %.1f, recover state is %d", lens_true_pos, self_recover); // parity determined by which end is stuck at self_recover = FOCUS_RECOVER_STEPS + (lens_true_pos < LP3_AF_DAC_M ? 1 : 0); } } else if (self_recover < 2 && (lens_true_pos < (LP3_AF_DAC_M - LP3_AF_DAC_3SIG) || lens_true_pos > (LP3_AF_DAC_M + LP3_AF_DAC_3SIG))) { // in suboptimal position with high prob, but may still recover by itself if (--self_recover < -(FOCUS_RECOVER_PATIENCE * 3)) { self_recover = FOCUS_RECOVER_STEPS / 2 + (lens_true_pos < LP3_AF_DAC_M ? 1 : 0); } } else if (self_recover < 0) { self_recover += 1; // reset if fine } c->self_recover.store(self_recover); } // called by processing_thread void process_road_camera(MultiCameraState *s, CameraState *c, int cnt) { const CameraBuf *b = &c->buf; const int roi_id = cnt % std::size(s->lapres); // rolling roi s->lapres[roi_id] = s->lap_conv->Update(b->q, (uint8_t *)b->cur_rgb_buf->addr, roi_id); setup_self_recover(c, &s->lapres[0], std::size(s->lapres)); MessageBuilder msg; auto framed = msg.initEvent().initRoadCameraState(); fill_frame_data(framed, b->cur_frame_data); if (env_send_road) { framed.setImage(get_frame_image(b)); } framed.setFocusVal(s->road_cam.focus); framed.setFocusConf(s->road_cam.confidence); framed.setRecoverState(s->road_cam.self_recover); framed.setSharpnessScore(s->lapres); framed.setTransform(b->yuv_transform.v); s->pm->send("roadCameraState", msg); if (cnt % 3 == 0) { const int x = 290, y = 322, width = 560, height = 314; const int skip = 1; camera_autoexposure(c, set_exposure_target(b, x, x + width, skip, y, y + height, skip)); } } void cameras_run(MultiCameraState *s) { std::vector threads; threads.push_back(std::thread(ops_thread, s)); threads.push_back(start_process_thread(s, &s->road_cam, process_road_camera)); threads.push_back(start_process_thread(s, &s->driver_cam, common_process_driver_camera)); CameraState* cameras[2] = {&s->road_cam, &s->driver_cam}; while (!do_exit) { struct pollfd fds[2] = {{.fd = cameras[0]->isp_fd, .events = POLLPRI}, {.fd = cameras[1]->isp_fd, .events = POLLPRI}}; int ret = poll(fds, std::size(fds), 1000); if (ret < 0) { if (errno == EINTR || errno == EAGAIN) continue; LOGE("poll failed (%d - %d)", ret, errno); break; } // process cameras for (int i=0; i<2; i++) { if (!fds[i].revents) continue; CameraState *c = cameras[i]; struct v4l2_event ev = {}; ret = HANDLE_EINTR(ioctl(c->isp_fd, VIDIOC_DQEVENT, &ev)); const msm_isp_event_data *isp_event_data = (const msm_isp_event_data *)ev.u.data; if (ev.type == ISP_EVENT_BUF_DIVERT) { const int buf_idx = isp_event_data->u.buf_done.buf_idx; const int buffer = (isp_event_data->u.buf_done.stream_id & 0xFFFF) - 1; if (buffer == 0) { c->buf.camera_bufs_metadata[buf_idx] = get_frame_metadata(c, isp_event_data->frame_id); c->buf.queue(buf_idx); } else { auto &ss = c->ss[buffer]; if (buffer == 1) { parse_autofocus(c, (uint8_t *)(ss.bufs[buf_idx].addr)); } ss.qbuf_info[buf_idx].dirty_buf = 1; HANDLE_EINTR(ioctl(c->isp_fd, VIDIOC_MSM_ISP_ENQUEUE_BUF, &ss.qbuf_info[buf_idx])); } } else if (ev.type == ISP_EVENT_EOF) { const uint64_t timestamp = (isp_event_data->mono_timestamp.tv_sec * 1000000000ULL + isp_event_data->mono_timestamp.tv_usec * 1000); std::lock_guard lk(c->frame_info_lock); c->frame_metadata[c->frame_metadata_idx] = (FrameMetadata){ .frame_id = isp_event_data->frame_id, .timestamp_eof = timestamp, .frame_length = (uint32_t)c->frame_length, .integ_lines = (uint32_t)c->cur_integ_lines, .lens_pos = c->cur_lens_pos, .lens_err = c->focus_err, .lens_true_pos = c->lens_true_pos, .gain = c->cur_gain_frac, .measured_grey_fraction = c->measured_grey_fraction, .target_grey_fraction = c->target_grey_fraction, .high_conversion_gain = false, }; c->frame_metadata_idx = (c->frame_metadata_idx + 1) % METADATA_BUF_COUNT; } else if (ev.type == ISP_EVENT_ERROR) { LOGE("ISP_EVENT_ERROR! err type: 0x%08x", isp_event_data->u.error_info.err_type); } } } LOG(" ************** STOPPING **************"); for (auto &t : threads) t.join(); cameras_close(s); } void cameras_close(MultiCameraState *s) { camera_close(&s->road_cam); camera_close(&s->driver_cam); for (int i = 0; i < FRAME_BUF_COUNT; i++) { s->focus_bufs[i].free(); s->stats_bufs[i].free(); } delete s->lap_conv; delete s->sm; delete s->pm; }