import numpy as np from collections import defaultdict from common.numpy_fast import interp _FCW_A_ACT_V = [-3., -2.] _FCW_A_ACT_BP = [0., 30.] class FCWChecker(): def __init__(self): self.reset_lead(0.0) self.common_counters = defaultdict(lambda: 0) def reset_lead(self, cur_time): self.last_fcw_a = 0.0 self.v_lead_max = 0.0 self.lead_seen_t = cur_time self.last_fcw_time = 0.0 self.last_min_a = 0.0 self.counters = defaultdict(lambda: 0) @staticmethod def calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead): max_ttc = 5.0 v_rel = v_ego - v_lead a_rel = a_ego - a_lead # assuming that closing gap ARel comes from lead vehicle decel, # then limit ARel so that v_lead will get to zero in no sooner than t_decel. # This helps underweighting ARel when v_lead is close to zero. t_decel = 2. a_rel = np.minimum(a_rel, v_lead / t_decel) # delta of the quadratic equation to solve for ttc delta = v_rel**2 + 2 * x_lead * a_rel # assign an arbitrary high ttc value if there is no solution to ttc if delta < 0.1 or (np.sqrt(delta) + v_rel < 0.1): ttc = max_ttc else: ttc = np.minimum(2 * x_lead / (np.sqrt(delta) + v_rel), max_ttc) return ttc def update(self, mpc_solution, cur_time, active, v_ego, a_ego, x_lead, v_lead, a_lead, y_lead, vlat_lead, fcw_lead, blinkers): mpc_solution_a = list(mpc_solution[0].a_ego) self.last_min_a = min(mpc_solution_a) self.v_lead_max = max(self.v_lead_max, v_lead) self.common_counters['blinkers'] = self.common_counters['blinkers'] + 10.0 / (20 * 3.0) if not blinkers else 0 self.common_counters['v_ego'] = self.common_counters['v_ego'] + 1 if v_ego > 5.0 else 0 if (fcw_lead > 0.99): ttc = self.calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead) self.counters['ttc'] = self.counters['ttc'] + 1 if ttc < 2.5 else 0 self.counters['v_lead_max'] = self.counters['v_lead_max'] + 1 if self.v_lead_max > 2.5 else 0 self.counters['v_ego_lead'] = self.counters['v_ego_lead'] + 1 if v_ego > v_lead else 0 self.counters['lead_seen'] = self.counters['lead_seen'] + 0.33 self.counters['y_lead'] = self.counters['y_lead'] + 1 if abs(y_lead) < 1.0 else 0 self.counters['vlat_lead'] = self.counters['vlat_lead'] + 1 if abs(vlat_lead) < 0.4 else 0 a_thr = interp(v_lead, _FCW_A_ACT_BP, _FCW_A_ACT_V) a_delta = min(mpc_solution_a[:15]) - min(0.0, a_ego) future_fcw_allowed = all(c >= 10 for c in self.counters.values()) future_fcw_allowed = future_fcw_allowed and all(c >= 10 for c in self.common_counters.values()) future_fcw = (self.last_min_a < -3.0 or a_delta < a_thr) and future_fcw_allowed if future_fcw and (self.last_fcw_time + 5.0 < cur_time): self.last_fcw_time = cur_time self.last_fcw_a = self.last_min_a return True return False