from common.numpy_fast import interp import numpy as np from cereal import log CAMERA_OFFSET = 0.06 # m from center car to camera def compute_path_pinv(l=50): deg = 3 x = np.arange(l*1.0) X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T pinv = np.linalg.pinv(X) return pinv def model_polyfit(points, path_pinv): return np.dot(path_pinv, [float(x) for x in points]) def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width): # This will improve behaviour when lanes suddenly widen lane_width = min(4.0, lane_width) l_prob = l_prob * interp(abs(l_poly[3]), [2, 2.5], [1.0, 0.0]) r_prob = r_prob * interp(abs(r_poly[3]), [2, 2.5], [1.0, 0.0]) path_from_left_lane = l_poly.copy() path_from_left_lane[3] -= lane_width / 2.0 path_from_right_lane = r_poly.copy() path_from_right_lane[3] += lane_width / 2.0 lr_prob = l_prob + r_prob - l_prob * r_prob d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001) return lr_prob * d_poly_lane + (1.0 - lr_prob) * p_poly class LanePlanner(): def __init__(self): self.l_poly = [0., 0., 0., 0.] self.r_poly = [0., 0., 0., 0.] self.p_poly = [0., 0., 0., 0.] self.d_poly = [0., 0., 0., 0.] self.lane_width_estimate = 3.7 self.lane_width_certainty = 1.0 self.lane_width = 3.7 self.l_prob = 0. self.r_prob = 0. self.l_lane_change_prob = 0. self.r_lane_change_prob = 0. self._path_pinv = compute_path_pinv() self.x_points = np.arange(50) def parse_model(self, md): if len(md.leftLane.poly): self.l_poly = np.array(md.leftLane.poly) self.r_poly = np.array(md.rightLane.poly) self.p_poly = np.array(md.path.poly) else: self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv) # left line self.r_poly = model_polyfit(md.rightLane.points, self._path_pinv) # right line self.p_poly = model_polyfit(md.path.points, self._path_pinv) # predicted path self.l_prob = md.leftLane.prob # left line prob self.r_prob = md.rightLane.prob # right line prob if len(md.meta.desirePrediction): self.l_lane_change_prob = md.meta.desirePrediction[log.PathPlan.Desire.laneChangeLeft - 1] self.r_lane_change_prob = md.meta.desirePrediction[log.PathPlan.Desire.laneChangeRight - 1] def update_d_poly(self, v_ego): # only offset left and right lane lines; offsetting p_poly does not make sense self.l_poly[3] += CAMERA_OFFSET self.r_poly[3] += CAMERA_OFFSET # Find current lanewidth self.lane_width_certainty += 0.05 * (self.l_prob * self.r_prob - self.lane_width_certainty) current_lane_width = abs(self.l_poly[3] - self.r_poly[3]) self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate) speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5]) self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \ (1 - self.lane_width_certainty) * speed_lane_width self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width) def update(self, v_ego, md): self.parse_model(md) self.update_d_poly(v_ego)