#include const int controlHorizon = 50; using namespace std; #define G 9.81 #define TR 1.8 #define RW(v_ego, v_l) (v_ego * TR - (v_l - v_ego) * TR + v_ego*v_ego/(2*G) - v_l*v_l / (2*G)) #define NORM_RW_ERROR(v_ego, v_l, p) ((RW(v_ego, v_l) + 4.0 - p)/(sqrt(v_ego + 0.5) + 0.1)) int main( ) { USING_NAMESPACE_ACADO DifferentialEquation f; DifferentialState x_ego, v_ego, a_ego; OnlineData x_l, v_l; Control j_ego; auto desired = 4.0 + RW(v_ego, v_l); auto d_l = x_l - x_ego; // Equations of motion f << dot(x_ego) == v_ego; f << dot(v_ego) == a_ego; f << dot(a_ego) == j_ego; // Running cost Function h; h << exp(0.3 * NORM_RW_ERROR(v_ego, v_l, d_l)) - 1; h << (d_l - desired) / (0.05 * v_ego + 0.5); h << a_ego * (0.1 * v_ego + 1.0); h << j_ego * (0.1 * v_ego + 1.0); // Weights are defined in mpc. BMatrix Q(4,4); Q.setAll(true); // Terminal cost Function hN; hN << exp(0.3 * NORM_RW_ERROR(v_ego, v_l, d_l)) - 1; hN << (d_l - desired) / (0.05 * v_ego + 0.5); hN << a_ego * (0.1 * v_ego + 1.0); // Weights are defined in mpc. BMatrix QN(3,3); QN.setAll(true); // Non uniform time grid // First 5 timesteps are 0.2, after that it's 0.6 DMatrix numSteps(20, 1); for (int i = 0; i < 5; i++){ numSteps(i) = 1; } for (int i = 5; i < 20; i++){ numSteps(i) = 3; } // Setup Optimal Control Problem const double tStart = 0.0; const double tEnd = 10.0; OCP ocp( tStart, tEnd, numSteps); ocp.subjectTo(f); ocp.minimizeLSQ(Q, h); ocp.minimizeLSQEndTerm(QN, hN); ocp.subjectTo( 0.0 <= v_ego); ocp.setNOD(2); OCPexport mpc(ocp); mpc.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON ); mpc.set( DISCRETIZATION_TYPE, MULTIPLE_SHOOTING ); mpc.set( INTEGRATOR_TYPE, INT_RK4 ); mpc.set( NUM_INTEGRATOR_STEPS, controlHorizon); mpc.set( MAX_NUM_QP_ITERATIONS, 500); mpc.set( CG_USE_VARIABLE_WEIGHTING_MATRIX, YES); mpc.set( SPARSE_QP_SOLUTION, CONDENSING ); mpc.set( QP_SOLVER, QP_QPOASES ); mpc.set( HOTSTART_QP, YES ); mpc.set( GENERATE_TEST_FILE, NO); mpc.set( GENERATE_MAKE_FILE, NO ); mpc.set( GENERATE_MATLAB_INTERFACE, NO ); mpc.set( GENERATE_SIMULINK_INTERFACE, NO ); if (mpc.exportCode( "lib_mpc_export" ) != SUCCESSFUL_RETURN) exit( EXIT_FAILURE ); mpc.printDimensionsQP( ); return EXIT_SUCCESS; }