#!/usr/bin/env python3 import os import time import unittest import numpy as np from collections import namedtuple, defaultdict import cereal.messaging as messaging from cereal import log from system.hardware import TICI, HARDWARE from selfdrive.manager.process_config import managed_processes BMX = { ('bmx055', 'acceleration'), ('bmx055', 'gyroUncalibrated'), ('bmx055', 'magneticUncalibrated'), ('bmx055', 'temperature'), } LSM = { ('lsm6ds3', 'acceleration'), ('lsm6ds3', 'gyroUncalibrated'), ('lsm6ds3', 'temperature'), } LSM_C = {(x[0]+'trc', x[1]) for x in LSM} MMC = { ('mmc5603nj', 'magneticUncalibrated'), } RPR = { ('rpr0521', 'light'), } SENSOR_CONFIGURATIONS = ( (BMX | LSM | RPR), (MMC | LSM | RPR), (BMX | LSM_C | RPR), (MMC| LSM_C | RPR), ) Sensor = log.SensorEventData.SensorSource SensorConfig = namedtuple('SensorConfig', ['type', 'sanity_min', 'sanity_max']) ALL_SENSORS = { Sensor.rpr0521: { SensorConfig("light", 0, 1023), }, Sensor.lsm6ds3: { SensorConfig("acceleration", 5, 15), SensorConfig("gyroUncalibrated", 0, .2), SensorConfig("temperature", 0, 60), }, Sensor.lsm6ds3trc: { SensorConfig("acceleration", 5, 15), SensorConfig("gyroUncalibrated", 0, .2), SensorConfig("temperature", 0, 60), }, Sensor.bmx055: { SensorConfig("acceleration", 5, 15), SensorConfig("gyroUncalibrated", 0, .2), SensorConfig("magneticUncalibrated", 0, 300), SensorConfig("temperature", 0, 60), }, Sensor.mmc5603nj: { SensorConfig("magneticUncalibrated", 0, 300), } } LSM_IRQ = 336 def get_irq_count(irq: int): with open(f"/sys/kernel/irq/{irq}/per_cpu_count") as f: per_cpu = map(int, f.read().split(",")) return sum(per_cpu) def read_sensor_events(duration_sec): sensor_types = ['accelerometer', 'gyroscope', 'magnetometer', 'accelerometer2', 'gyroscope2', 'lightSensor', 'temperatureSensor'] esocks = {} events = defaultdict(list) for stype in sensor_types: esocks[stype] = messaging.sub_sock(stype, timeout=0.1) start_time_sec = time.monotonic() while time.monotonic() - start_time_sec < duration_sec: for esock in esocks: events[esock] += messaging.drain_sock(esocks[esock]) time.sleep(0.1) assert sum(map(len, events.values())) != 0, "No sensor events collected!" return events class TestSensord(unittest.TestCase): @classmethod def setUpClass(cls): if not TICI: raise unittest.SkipTest # make sure gpiochip0 is readable HARDWARE.initialize_hardware() # enable LSM self test os.environ["LSM_SELF_TEST"] = "1" # read initial sensor values every test case can use os.system("pkill -f ./_sensord") try: managed_processes["sensord"].start() time.sleep(3) cls.sample_secs = 10 cls.events = read_sensor_events(cls.sample_secs) finally: # teardown won't run if this doesn't succeed managed_processes["sensord"].stop() @classmethod def tearDownClass(cls): managed_processes["sensord"].stop() if "LSM_SELF_TEST" in os.environ: del os.environ['LSM_SELF_TEST'] def tearDown(self): managed_processes["sensord"].stop() def test_sensors_present(self): # verify correct sensors configuration seen = set() for etype in self.events: for measurement in self.events[etype]: m = getattr(measurement, measurement.which()) seen.add((str(m.source), m.which())) self.assertIn(seen, SENSOR_CONFIGURATIONS) def test_lsm6ds3_timing(self): # verify measurements are sampled and published at 104Hz sensor_t = { 1: [], # accel 5: [], # gyro } for measurement in self.events['accelerometer']: m = getattr(measurement, measurement.which()) sensor_t[m.sensor].append(m.timestamp) for measurement in self.events['gyroscope']: m = getattr(measurement, measurement.which()) sensor_t[m.sensor].append(m.timestamp) for s, vals in sensor_t.items(): with self.subTest(sensor=s): assert len(vals) > 0 tdiffs = np.diff(vals) / 1e6 # millis high_delay_diffs = list(filter(lambda d: d >= 20., tdiffs)) assert len(high_delay_diffs) < 15, f"Too many large diffs: {high_delay_diffs}" avg_diff = sum(tdiffs)/len(tdiffs) avg_freq = 1. / (avg_diff * 1e-3) assert 92. < avg_freq < 114., f"avg freq {avg_freq}Hz wrong, expected 104Hz" stddev = np.std(tdiffs) assert stddev < 2.0, f"Standard-dev to big {stddev}" def test_events_check(self): # verify if all sensors produce events sensor_events = dict() for etype in self.events: for measurement in self.events[etype]: m = getattr(measurement, measurement.which()) if m.type in sensor_events: sensor_events[m.type] += 1 else: sensor_events[m.type] = 1 for s in sensor_events: err_msg = f"Sensor {s}: 200 < {sensor_events[s]}" assert sensor_events[s] > 200, err_msg def test_logmonottime_timestamp_diff(self): # ensure diff between the message logMonotime and sample timestamp is small tdiffs = list() for etype in self.events: for measurement in self.events[etype]: m = getattr(measurement, measurement.which()) # check if gyro and accel timestamps are before logMonoTime if str(m.source).startswith("lsm6ds3") and m.which() != 'temperature': err_msg = f"Timestamp after logMonoTime: {m.timestamp} > {measurement.logMonoTime}" assert m.timestamp < measurement.logMonoTime, err_msg # negative values might occur, as non interrupt packages created # before the sensor is read tdiffs.append(abs(measurement.logMonoTime - m.timestamp) / 1e6) high_delay_diffs = set(filter(lambda d: d >= 15., tdiffs)) assert len(high_delay_diffs) < 20, f"Too many measurements published : {high_delay_diffs}" avg_diff = round(sum(tdiffs)/len(tdiffs), 4) assert avg_diff < 4, f"Avg packet diff: {avg_diff:.1f}ms" stddev = np.std(tdiffs) assert stddev < 2, f"Timing diffs have too high stddev: {stddev}" def test_sensor_values_sanity_check(self): sensor_values = dict() for etype in self.events: for measurement in self.events[etype]: m = getattr(measurement, measurement.which()) key = (m.source.raw, m.which()) values = getattr(m, m.which()) if hasattr(values, 'v'): values = values.v values = np.atleast_1d(values) if key in sensor_values: sensor_values[key].append(values) else: sensor_values[key] = [values] # Sanity check sensor values and counts for sensor, stype in sensor_values: for s in ALL_SENSORS[sensor]: if s.type != stype: continue key = (sensor, s.type) val_cnt = len(sensor_values[key]) min_samples = self.sample_secs * 100 # Hz err_msg = f"Sensor {sensor} {s.type} got {val_cnt} measurements, expected {min_samples}" assert min_samples*0.9 < val_cnt < min_samples*1.1, err_msg mean_norm = np.mean(np.linalg.norm(sensor_values[key], axis=1)) err_msg = f"Sensor '{sensor} {s.type}' failed sanity checks {mean_norm} is not between {s.sanity_min} and {s.sanity_max}" assert s.sanity_min <= mean_norm <= s.sanity_max, err_msg def test_sensor_verify_no_interrupts_after_stop(self): managed_processes["sensord"].start() time.sleep(3) # read /proc/interrupts to verify interrupts are received state_one = get_irq_count(LSM_IRQ) time.sleep(1) state_two = get_irq_count(LSM_IRQ) error_msg = f"no interrupts received after sensord start!\n{state_one} {state_two}" assert state_one != state_two, error_msg managed_processes["sensord"].stop() time.sleep(1) # read /proc/interrupts to verify no more interrupts are received state_one = get_irq_count(LSM_IRQ) time.sleep(1) state_two = get_irq_count(LSM_IRQ) assert state_one == state_two, "Interrupts received after sensord stop!" if __name__ == "__main__": unittest.main()