from transformers import AutoTokenizer from datasets import load_dataset from tinygrad.apps.llm import SimpleTokenizer, gpt2_decode_vocab, get_llama_re from tinygrad.helpers import tqdm, getenv, partition # use ALLOW_FAILED=-1 to go over the entire dataset without printing. if __name__ == "__main__": base_tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B-Instruct") special_tokens, normal_tokens = partition(((t, tid) for t, tid in base_tokenizer.vocab.items()), lambda e: e[1] in base_tokenizer.all_special_ids) inv_vocab = { tid: word for word, tid in base_tokenizer.get_vocab().items() } simple_tokenizer = SimpleTokenizer(get_llama_re(), gpt2_decode_vocab(dict(normal_tokens)), dict(special_tokens)) color_codes = [ 91, 92, 94, 93, 95 ] def color_tokens(tids): return "".join(f"\033[{color_codes[i%len(color_codes)]}m{base_tokenizer.decode([t])}" for i, t in enumerate(tids)) + "\033[0m" ds = load_dataset("OpenAssistant/oasst1") allow_failed = getenv("ALLOW_FAILED", 10) fail_count, total = 0, 0 for idx, el in enumerate(tqdm(ds["train"])): total += 1 try: simple_tokens = tuple(simple_tokenizer.encode(el["text"])) except RuntimeError: simple_tokens = () base_tokens = tuple(base_tokenizer.encode(el["text"], add_special_tokens=False)) if simple_tokens != base_tokens: fail_count += 1 allow_failed -= 1 if allow_failed >= 0: print(f"tokens mismatch at index: {idx}.\n") print("simple: ", color_tokens(simple_tokens)) print("official:", color_tokens(base_tokens) + "\n") if allow_failed == 0: break print(f"{fail_count}/{total} samples are inconsistent with the official tokenizer.")