import unittest from tinygrad import Device, Tensor, dtypes from tinygrad.uop.ops import UOp, Ops from tinygrad.codegen.opt import Opt, OptOps from tinygrad.shape.shapetracker import ShapeTracker, View from tinygrad.engine.realize import get_program from tinygrad.helpers import AMX @unittest.skipUnless(Device[Device.DEFAULT].renderer.supports_float4, "need backends that support float4") class TestFloat4(unittest.TestCase): @staticmethod def count_float4(uops: list[UOp], n=4): return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.float.vec(n)]), len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.float.vec(n)])) @staticmethod def count_half4(uops: list[UOp]): return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.half.vec(4)]), len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.half.vec(4)])) def test_float4_basic(self): a = Tensor.empty(2, 8).realize() b = Tensor.empty(2, 8).realize() c = a + b s = c.schedule()[0] realized_ast = s.ast opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)] program = get_program(realized_ast, Device[Device.DEFAULT].renderer, opts=opts_to_apply) assert TestFloat4.count_float4(program.uops) == (2, 1) @unittest.skipIf(Device.DEFAULT in {"CPU"} and AMX, "CPU with AMX upcasts float up to size 16") def test_float4_multidim(self): a = Tensor.empty(2, 8).realize() b = Tensor.empty(2, 8).realize() c = a + b s = c.schedule()[0] uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=2)]).uops assert TestFloat4.count_float4(uops) == (4, 2) @unittest.skipUnless(Device.DEFAULT in {"CPU"} and AMX, "Only CPU with AMX upcasts float up to size 16") def test_float4_multidim_amx(self): def kernel_for_shape(size, shift): a = Tensor.empty(2, size).realize() b = Tensor.empty(2, size).realize() c = a + b s = c.schedule()[0] return get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=shift)]).uops sizes = [12, 8, 16] shifts = [3, 2, 4] expected_upcast_size = [4, 8, 16] expected_output = [(6,3), (2,1), (2,1)] for i in range(len(sizes)): assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i] def test_float4_unaligned_load(self): a = Tensor.empty(9).realize().shrink(((1, 9),)) b = Tensor.empty(9).realize().shrink(((1, 9),)) c = a + b s = c.schedule()[0] realized_ast = s.ast opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)] program = get_program(realized_ast, Device[Device.DEFAULT].renderer, opts=opts_to_apply) assert TestFloat4.count_float4(program.uops) == (0, 1) @unittest.skipIf(Device.DEFAULT in {"CPU"} and AMX, "CPU with AMX upcasts float up to size 16") def test_float4_multidim_unaligned_load(self): a = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),)) b = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),)) c = a + b s = c.schedule()[0] uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=2)]).uops assert TestFloat4.count_float4(uops) == (0, 2) @unittest.skipUnless(Device.DEFAULT in {"CPU"} and AMX, "Only CPU with AMX upcasts float up to size 16") def test_float4_multidim_unaligned_load_amx(self): def kernel_for_shape(size, shift): a = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),)) b = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),)) c = a + b s = c.schedule()[0] return get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=shift)]).uops sizes = [13, 9, 17] shifts = [3, 2, 4] expected_upcast_size = [4, 8, 16] expected_output = [(0,3), (0,1), (0,1)] for i in range(len(sizes)): assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i] def test_float4_sometimes_unaligned(self): a = Tensor.empty(1, 1, 8).realize() b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5))) c = a.conv2d(b) # only the first and last conv dot products are aligned in a, and b is never aligned, so no # float4 should be emitted (the reduce axis of size 4 is the float4 axis here) s = c.schedule()[0] uops = get_program(s.ast, opts=[Opt(op=OptOps.UNROLL, axis=0, arg=4)]).uops assert TestFloat4.count_float4(uops) == (0, 0) def test_float4_multidim_sometimes_unaligned(self): a = Tensor.empty(1, 1, 7).realize() b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5))) c = a.conv2d(b) # the first conv dot product is aligned in a. If we upcast the output and reduce # dimension, then we could do float4 for only that one set of loads, but we currently # don't. # UPDATE: now we do this fusion s = c.schedule()[0] uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=0), Opt(op=OptOps.UNROLL, axis=0, arg=0)]).uops assert TestFloat4.count_float4(uops) in {(0,1), (1,1)} def test_float4_expand(self): a = Tensor.empty(9).realize().shrink(((1, 9),)) b = Tensor.empty(2).realize().reshape((2, 1)).expand((2,4)).reshape((8,)) c = a + b # we will upcast the top axis of sz 4. they should not be coalesced into float4, # since the top axis is not contiguous. s = c.schedule()[0] uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops assert TestFloat4.count_float4(uops) == (0, 1) def test_float4_heterogeneous(self): a = Tensor.empty(8).realize() b = Tensor.empty(9).realize().shrink(((1, 9),)) c = a + b # should float4 b but not a s = c.schedule()[0] uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops assert TestFloat4.count_float4(uops) == (1, 1) def test_half4_load_unrolled(self): # from llama 7B shard 4 gpus ast = UOp(Ops.SINK, dtypes.void, arg=None, src=( UOp(Ops.STORE, dtypes.void, arg=None, src=( UOp(Ops.VIEW, dtypes.float.ptr(96000), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1), strides=(0, 32000, 1, 0), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501 UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(96000), arg=0, src=()),)), UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (3,)), src=( UOp(Ops.CAST, dtypes.float, arg=None, src=( UOp(Ops.MUL, dtypes.half, arg=None, src=( UOp(Ops.LOAD, dtypes.half, arg=None, src=( UOp(Ops.VIEW, dtypes.half.ptr(9216), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1024), strides=(0, 4096, 0, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501 UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(9216), arg=1, src=()),)),)), UOp(Ops.LOAD, dtypes.half, arg=None, src=( UOp(Ops.VIEW, dtypes.half.ptr(32768000), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1024), strides=(0, 0, 1024, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501 UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(32768000), arg=2, src=()),)),)),)),)),)),)),)) # TODO: fix this, expected might change but should be positive for expected, opts in [ ((7, 0), [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=3), Opt(op=OptOps.UNROLL, axis=0, arg=4)]), ((5, 0), [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UNROLL, axis=0, arg=4)]), ((2, 0), [Opt(op=OptOps.UNROLL, axis=0, arg=4)]), ]: program = get_program(ast, Device[Device.DEFAULT].renderer, opts=opts) count = TestFloat4.count_half4(program.uops) assert count == expected, f"{count=}, {expected=}" if __name__ == '__main__': unittest.main()