#!/usr/bin/env python3 ''' This process finds calibration values. More info on what these calibration values are can be found here https://github.com/commaai/openpilot/tree/master/common/transformations While the roll calibration is a real value that can be estimated, here we assume it's zero, and the image input into the neural network is not corrected for roll. ''' import gc import os import capnp import numpy as np from typing import List, NoReturn, Optional from cereal import car, log import cereal.messaging as messaging from common.conversions import Conversions as CV from common.params import Params, put_nonblocking from common.realtime import set_realtime_priority from common.transformations.model import model_height from common.transformations.camera import get_view_frame_from_road_frame from common.transformations.orientation import rot_from_euler, euler_from_rot from system.swaglog import cloudlog MIN_SPEED_FILTER = 15 * CV.MPH_TO_MS MAX_VEL_ANGLE_STD = np.radians(0.25) MAX_YAW_RATE_FILTER = np.radians(2) # per second # This is at model frequency, blocks needed for efficiency SMOOTH_CYCLES = 400 BLOCK_SIZE = 100 INPUTS_NEEDED = 5 # Minimum blocks needed for valid calibration INPUTS_WANTED = 50 # We want a little bit more than we need for stability MAX_ALLOWED_SPREAD = np.radians(2) RPY_INIT = np.array([0.0,0.0,0.0]) # These values are needed to accommodate biggest modelframe PITCH_LIMITS = np.array([-0.09074112085129739, 0.14907572052989657]) YAW_LIMITS = np.array([-0.06912048084718224, 0.06912048084718235]) DEBUG = os.getenv("DEBUG") is not None class Calibration: UNCALIBRATED = 0 CALIBRATED = 1 INVALID = 2 def is_calibration_valid(rpy: np.ndarray) -> bool: return (PITCH_LIMITS[0] < rpy[1] < PITCH_LIMITS[1]) and (YAW_LIMITS[0] < rpy[2] < YAW_LIMITS[1]) # type: ignore def sanity_clip(rpy: np.ndarray) -> np.ndarray: if np.isnan(rpy).any(): rpy = RPY_INIT return np.array([rpy[0], np.clip(rpy[1], PITCH_LIMITS[0] - .005, PITCH_LIMITS[1] + .005), np.clip(rpy[2], YAW_LIMITS[0] - .005, YAW_LIMITS[1] + .005)]) class Calibrator: def __init__(self, param_put: bool = False): self.param_put = param_put self.CP = car.CarParams.from_bytes(Params().get("CarParams", block=True)) # Read saved calibration params = Params() calibration_params = params.get("CalibrationParams") self.wide_camera = params.get_bool('WideCameraOnly') rpy_init = RPY_INIT valid_blocks = 0 if param_put and calibration_params: try: msg = log.Event.from_bytes(calibration_params) rpy_init = np.array(msg.liveCalibration.rpyCalib) valid_blocks = msg.liveCalibration.validBlocks except Exception: cloudlog.exception("Error reading cached CalibrationParams") self.reset(rpy_init, valid_blocks) self.update_status() def reset(self, rpy_init: np.ndarray = RPY_INIT, valid_blocks: int = 0, smooth_from: Optional[np.ndarray] = None) -> None: if not np.isfinite(rpy_init).all(): self.rpy = RPY_INIT.copy() else: self.rpy = rpy_init.copy() if not np.isfinite(valid_blocks) or valid_blocks < 0: self.valid_blocks = 0 else: self.valid_blocks = valid_blocks self.rpys = np.tile(self.rpy, (INPUTS_WANTED, 1)) self.idx = 0 self.block_idx = 0 self.v_ego = 0.0 if smooth_from is None: self.old_rpy = RPY_INIT self.old_rpy_weight = 0.0 else: self.old_rpy = smooth_from self.old_rpy_weight = 1.0 def get_valid_idxs(self) -> List[int]: # exclude current block_idx from validity window before_current = list(range(self.block_idx)) after_current = list(range(min(self.valid_blocks, self.block_idx + 1), self.valid_blocks)) return before_current + after_current def update_status(self) -> None: valid_idxs = self.get_valid_idxs() if valid_idxs: rpys = self.rpys[valid_idxs] self.rpy = np.mean(rpys, axis=0) max_rpy_calib = np.array(np.max(rpys, axis=0)) min_rpy_calib = np.array(np.min(rpys, axis=0)) self.calib_spread = np.abs(max_rpy_calib - min_rpy_calib) else: self.calib_spread = np.zeros(3) if self.valid_blocks < INPUTS_NEEDED: self.cal_status = Calibration.UNCALIBRATED elif is_calibration_valid(self.rpy): self.cal_status = Calibration.CALIBRATED else: self.cal_status = Calibration.INVALID # If spread is too high, assume mounting was changed and reset to last block. # Make the transition smooth. Abrupt transitions are not good for feedback loop through supercombo model. if max(self.calib_spread) > MAX_ALLOWED_SPREAD and self.cal_status == Calibration.CALIBRATED: self.reset(self.rpys[self.block_idx - 1], valid_blocks=INPUTS_NEEDED, smooth_from=self.rpy) write_this_cycle = (self.idx == 0) and (self.block_idx % (INPUTS_WANTED//5) == 5) if self.param_put and write_this_cycle: put_nonblocking("CalibrationParams", self.get_msg().to_bytes()) def handle_v_ego(self, v_ego: float) -> None: self.v_ego = v_ego def get_smooth_rpy(self) -> np.ndarray: if self.old_rpy_weight > 0: return self.old_rpy_weight * self.old_rpy + (1.0 - self.old_rpy_weight) * self.rpy else: return self.rpy def handle_cam_odom(self, trans: List[float], rot: List[float], trans_std: List[float]) -> Optional[np.ndarray]: self.old_rpy_weight = min(0.0, self.old_rpy_weight - 1/SMOOTH_CYCLES) straight_and_fast = ((self.v_ego > MIN_SPEED_FILTER) and (trans[0] > MIN_SPEED_FILTER) and (abs(rot[2]) < MAX_YAW_RATE_FILTER)) if self.wide_camera: angle_std_threshold = 4*MAX_VEL_ANGLE_STD else: angle_std_threshold = MAX_VEL_ANGLE_STD certain_if_calib = ((np.arctan2(trans_std[1], trans[0]) < angle_std_threshold) or (self.valid_blocks < INPUTS_NEEDED)) if not (straight_and_fast and certain_if_calib): return None observed_rpy = np.array([0, -np.arctan2(trans[2], trans[0]), np.arctan2(trans[1], trans[0])]) new_rpy = euler_from_rot(rot_from_euler(self.get_smooth_rpy()).dot(rot_from_euler(observed_rpy))) new_rpy = sanity_clip(new_rpy) self.rpys[self.block_idx] = (self.idx*self.rpys[self.block_idx] + (BLOCK_SIZE - self.idx) * new_rpy) / float(BLOCK_SIZE) self.idx = (self.idx + 1) % BLOCK_SIZE if self.idx == 0: self.block_idx += 1 self.valid_blocks = max(self.block_idx, self.valid_blocks) self.block_idx = self.block_idx % INPUTS_WANTED self.update_status() return new_rpy def get_msg(self) -> capnp.lib.capnp._DynamicStructBuilder: smooth_rpy = self.get_smooth_rpy() extrinsic_matrix = get_view_frame_from_road_frame(0, smooth_rpy[1], smooth_rpy[2], model_height) msg = messaging.new_message('liveCalibration') liveCalibration = msg.liveCalibration liveCalibration.validBlocks = self.valid_blocks liveCalibration.calStatus = self.cal_status liveCalibration.calPerc = min(100 * (self.valid_blocks * BLOCK_SIZE + self.idx) // (INPUTS_NEEDED * BLOCK_SIZE), 100) liveCalibration.extrinsicMatrix = extrinsic_matrix.flatten().tolist() liveCalibration.rpyCalib = smooth_rpy.tolist() liveCalibration.rpyCalibSpread = self.calib_spread.tolist() if self.CP.notCar: extrinsic_matrix = get_view_frame_from_road_frame(0, 0, 0, model_height) liveCalibration.validBlocks = INPUTS_NEEDED liveCalibration.calStatus = Calibration.CALIBRATED liveCalibration.calPerc = 100. liveCalibration.extrinsicMatrix = extrinsic_matrix.flatten().tolist() liveCalibration.rpyCalib = [0, 0, 0] liveCalibration.rpyCalibSpread = self.calib_spread.tolist() return msg def send_data(self, pm: messaging.PubMaster) -> None: pm.send('liveCalibration', self.get_msg()) def calibrationd_thread(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None) -> NoReturn: gc.disable() set_realtime_priority(1) if sm is None: sm = messaging.SubMaster(['cameraOdometry', 'carState'], poll=['cameraOdometry']) if pm is None: pm = messaging.PubMaster(['liveCalibration']) calibrator = Calibrator(param_put=True) while 1: timeout = 0 if sm.frame == -1 else 100 sm.update(timeout) if sm.updated['cameraOdometry']: calibrator.handle_v_ego(sm['carState'].vEgo) new_rpy = calibrator.handle_cam_odom(sm['cameraOdometry'].trans, sm['cameraOdometry'].rot, sm['cameraOdometry'].transStd) if DEBUG and new_rpy is not None: print('got new rpy', new_rpy) # 4Hz driven by cameraOdometry if sm.frame % 5 == 0: calibrator.send_data(pm) def main(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None) -> NoReturn: calibrationd_thread(sm, pm) if __name__ == "__main__": main()