#include "stdafx.h" #include "ECUsim.h" ECUsim::ECUsim(std::string sn, unsigned long can_baud, bool ext_addr) : doloop(TRUE), verbose(TRUE), can11b_enabled(TRUE), can29b_enabled(TRUE), ext_addr(ext_addr){ this->panda = panda::Panda::openPanda(sn); this->panda->set_can_speed_cbps(panda::PANDA_CAN1, can_baud / 100); //Don't pass in baud where baud%100 != 0 this->panda->set_safety_mode(panda::SAFETY_ALLOUTPUT); this->panda->set_can_loopback(FALSE); this->panda->can_clear(panda::PANDA_CAN_RX); DWORD threadid; this->thread_can = CreateThread(NULL, 0, _canthreadBootstrap, (LPVOID)this, 0, &threadid); } ECUsim::~ECUsim() { this->stop(); this->join(); } void ECUsim::stop() { this->doloop = FALSE; } void ECUsim::join() { WaitForSingleObject(this->thread_can, INFINITE); } DWORD WINAPI ECUsim::_canthreadBootstrap(LPVOID This) { return ((ECUsim*)This)->can_recv_thread_function(); } DWORD ECUsim::can_recv_thread_function() { while (this->doloop) { auto msgs = this->panda->can_recv(); for (auto& msg : msgs) { if (msg.is_receipt) continue; if (msg.bus == 0 && !msg.is_receipt /*&& msg.len == 8*/ && msg.dat[0] >= 2) { if (this->verbose) { printf("Processing message (bus: %d; addr: %X; 29b: %d):\n ", msg.bus, msg.addr, msg.addr_29b); for (int i = 0; i < msg.len; i++) printf("%02X ", msg.dat[i]); printf("\n"); } this->_CAN_process_msg(msg); } else { if (this->verbose) { printf("Rejecting message (bus: %d; addr: %X; 29b: %d):\n ", msg.bus, msg.addr, msg.addr_29b); for (int i = 0; i < msg.len; i++) printf("%02X ", msg.dat[i]); printf("\n"); } } } } return 0; } BOOL ECUsim::_can_addr_matches(panda::PANDA_CAN_MSG& msg) { if (this->can11b_enabled && !msg.addr_29b && (msg.addr == 0x7DF || (msg.addr & 0x7F8) == 0x7E0)) { if (!this->ext_addr) { return TRUE; } else { return msg.len >= 1 && msg.dat[0] == 0x13;//13 is an arbitrary address picked to test ext addresses } } if (this->can29b_enabled && msg.addr_29b && ((msg.addr & 0x1FFF00FF) == 0x18DB00F1 || (msg.addr & 0x1FFF00FF) == 0x18da00f1)) { if (!this->ext_addr) { return TRUE; } else { return msg.len >= 1 && msg.dat[0] == 0x13;//13 is an arbitrary address picked to test ext addresses } } return FALSE; } void ECUsim::_CAN_process_msg(panda::PANDA_CAN_MSG& msg) { std::string outmsg; uint32_t outaddr; uint8_t formatted_msg_buff[8]; bool doreply = FALSE; if (this->_can_addr_matches(msg)) {// && msg.len == 8) { uint8_t *dat = (this->ext_addr) ? &msg.dat[1] : &msg.dat[0]; if ((dat[0] & 0xF0) == 0x10) { printf("Got a multiframe write request\n"); outaddr = (msg.addr_29b) ? 0x18DAF1EF : 0x7E8; this->panda->can_send(outaddr, msg.addr_29b, (const uint8_t*)"\x30\x00\x00", 3, panda::PANDA_CAN1); return; } /////////// Check if Flow Control Msg if ((dat[0] & 0xF0) == 0x30 && msg.len >= 3 && this->can_multipart_data.size() > 0) { if (this->verbose) printf("More data requested\n"); uint8_t block_size = dat[1], sep_time_min = dat[2]; outaddr = (msg.addr == 0x7DF || msg.addr == 0x7E0) ? 0x7E8 : 0x18DAF1EF; //ext addr 5th byte is just always 0x13 for simplicity unsigned int msgnum = 1; while (this->can_multipart_data.size()) { unsigned int datalen = this->ext_addr ? min(6, this->can_multipart_data.size()): //EXT ADDR VALUE min(7, this->can_multipart_data.size()); //NORMAL ADDR VALUE unsigned int idx = 0; if (this->ext_addr) formatted_msg_buff[idx++] = 0x13; //EXT ADDR formatted_msg_buff[idx++] = 0x20 | msgnum; for (int i = 0; i < datalen; i++) { formatted_msg_buff[i + idx] = this->can_multipart_data.front(); this->can_multipart_data.pop(); } for (int i = datalen + idx; i < sizeof(formatted_msg_buff); i++) formatted_msg_buff[i] = 0; if (this->verbose) { printf("Multipart reply to %X.\n ", outaddr); for (int i = 0; i < datalen + idx; i++) printf("%02X ", formatted_msg_buff[i]); printf("\n"); } this->panda->can_send(outaddr, msg.addr_29b, formatted_msg_buff, datalen + idx, panda::PANDA_CAN1); msgnum = (msgnum + 1) % 0x10; Sleep(10); } return; } /////////// Normal message in outmsg = this->process_obd_msg(dat[1], dat[2], doreply); if (doreply) { outaddr = (msg.addr_29b) ? 0x18DAF1EF : 0x7E8; if (outmsg.size() <= (this->ext_addr ? 4 : 5)) { unsigned int idx = 0; if(this->ext_addr) formatted_msg_buff[idx++] = 0x13; //EXT ADDR formatted_msg_buff[idx++] = outmsg.size() + 2; formatted_msg_buff[idx++] = 0x40 | dat[1]; formatted_msg_buff[idx++] = dat[2]; //PID memcpy_s(&formatted_msg_buff[idx], sizeof(formatted_msg_buff) - idx, outmsg.c_str(), outmsg.size()); for (int i = idx + outmsg.size(); i < 8; i++) formatted_msg_buff[i] = 0; if (this->verbose) { printf("Replying to %X.\n ", outaddr); for (int i = 0; i < 8; i++) printf("%02X ", formatted_msg_buff[i]); printf("\n"); } this->panda->can_send(outaddr, msg.addr_29b, formatted_msg_buff, 8, panda::PANDA_CAN1); //outmsg.size() + 3 } else { uint8_t first_msg_len = this->ext_addr ? min(2, outmsg.size() % 7) : //EXT ADDR VALUES min(3, outmsg.size() % 7); //NORMAL ADDR VALUES uint8_t payload_len = outmsg.size() + 3; unsigned int idx = 0; if (this->ext_addr) formatted_msg_buff[idx++] = 0x13; //EXT ADDR formatted_msg_buff[idx++] = 0x10 | ((payload_len >> 8) & 0xF); formatted_msg_buff[idx++] = payload_len & 0xFF; formatted_msg_buff[idx++] = 0x40 | dat[1]; formatted_msg_buff[idx++] = dat[2]; //PID formatted_msg_buff[idx++] = 1; memcpy_s(&formatted_msg_buff[idx], sizeof(formatted_msg_buff) - idx, outmsg.c_str(), first_msg_len); if (this->verbose) { printf("Replying FIRST FRAME to %X.\n ", outaddr); for (int i = 0; i < 8; i++) printf("%02X ", formatted_msg_buff[i]); printf("\n"); } this->panda->can_send(outaddr, msg.addr_29b, formatted_msg_buff, 8, panda::PANDA_CAN1); for (int i = first_msg_len; i < outmsg.size(); i++) this->can_multipart_data.push(outmsg[i]); } } } } std::string ECUsim::process_obd_msg(UCHAR mode, UCHAR pid, bool& return_data) { std::string tmp; return_data = TRUE; switch (mode) { case 0x01: // Mode : Show current data switch (pid) { case 0x00: //List supported things return "\xff\xff\xff\xfe"; //b"\xBE\x1F\xB8\x10" #Bitfield, random features case 0x01: // Monitor Status since DTC cleared return std::string("\x00\x00\x00\x00", 4); //Bitfield, random features case 0x04: // Calculated engine load return "\x2f"; case 0x05: // Engine coolant temperature return "\x3c"; case 0x0B: // Intake manifold absolute pressure return "\x90"; case 0x0C: // Engine RPM return "\x1A\xF8"; case 0x0D: // Vehicle Speed return "\x53"; case 0x10: // MAF air flow rate return "\x01\xA0"; case 0x11: // Throttle Position return "\x90"; case 0x33: // Absolute Barometric Pressure return "\x90"; default: return_data = FALSE; return ""; } case 0x09: // Mode : Request vehicle information switch (pid) { case 0x02: // Show VIN return "1D4GP00R55B123456"; case 0xFC: // test long multi message.Ligned up for LIN responses for (int i = 0; i < 80; i++) { tmp += "\xAA\xAA"; } return tmp;//">BBH", 0xAA, 0xAA, num + 1) case 0xFD: // test long multi message for (int i = 0; i < 80; i++) { tmp += "\xAA\xAA\xAA"; tmp.push_back(i >> 24); tmp.push_back((i >> 16) & 0xFF); tmp.push_back((i >> 8) & 0xFF); tmp.push_back(i & 0xFF); } return "\xAA\xAA\xAA" + tmp; case 0xFE: // test very long multi message tmp = "\xAA\xAA\xAA"; for (int i = 0; i < 584; i++) { tmp += "\xAA\xAA\xAA"; tmp.push_back(i >> 24); tmp.push_back((i >> 16) & 0xFF); tmp.push_back((i >> 8) & 0xFF); tmp.push_back(i & 0xFF); } return tmp + "\xAA"; case 0xFF: for (int i = 0; i < 584; i++) { tmp += "\xAA\xAA\xAA\xAA\xAA"; tmp.push_back(((i + 1) >> 8) & 0xFF); tmp.push_back((i + 1) & 0xFF); } return std::string("\xAA\x00\x00", 3) + tmp; default: return_data = FALSE; return ""; } case 0x3E: if (pid == 0) { return_data = TRUE; return ""; } return_data = FALSE; return ""; default: return_data = FALSE; return ""; } }