import math import numpy as np from collections import deque from cereal import log from opendbc.car.lateral import FRICTION_THRESHOLD, get_friction from openpilot.common.constants import ACCELERATION_DUE_TO_GRAVITY from openpilot.common.filter_simple import FirstOrderFilter from openpilot.selfdrive.controls.lib.latcontrol import LatControl from openpilot.common.pid import PIDController # At higher speeds (25+mph) we can assume: # Lateral acceleration achieved by a specific car correlates to # torque applied to the steering rack. It does not correlate to # wheel slip, or to speed. # This controller applies torque to achieve desired lateral # accelerations. To compensate for the low speed effects the # proportional gain is increased at low speeds by the PID controller. # Additionally, there is friction in the steering wheel that needs # to be overcome to move it at all, this is compensated for too. KP = 1.0 KI = 0.3 KD = 0.0 INTERP_SPEEDS = [1, 1.5, 2.0, 3.0, 5, 7.5, 10, 15, 30] KP_INTERP = [250, 120, 65, 30, 11.5, 5.5, 3.5, 2.0, KP] LP_FILTER_CUTOFF_HZ = 1.2 JERK_LOOKAHEAD_SECONDS = 0.19 JERK_GAIN = 0.3 LAT_ACCEL_REQUEST_BUFFER_SECONDS = 1.0 VERSION = 0 # bump this when changing controller class LatControlTorque(LatControl): def __init__(self, CP, CI, dt): super().__init__(CP, CI, dt) self.torque_params = CP.lateralTuning.torque.as_builder() self.torque_from_lateral_accel = CI.torque_from_lateral_accel() self.lateral_accel_from_torque = CI.lateral_accel_from_torque() self.pid = PIDController([INTERP_SPEEDS, KP_INTERP], KI, KD, rate=1/self.dt) self.update_limits() self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg self.lookahead_frames = int(JERK_LOOKAHEAD_SECONDS / self.dt) self.lat_accel_request_buffer_len = int(LAT_ACCEL_REQUEST_BUFFER_SECONDS / self.dt) self.lat_accel_request_buffer = deque([0.] * self.lat_accel_request_buffer_len , maxlen=self.lat_accel_request_buffer_len) self.jerk_filter = FirstOrderFilter(0.0, 1 / (2 * np.pi * LP_FILTER_CUTOFF_HZ), self.dt) self.measurement_rate_filter = FirstOrderFilter(0.0, 1 / (2 * np.pi * LP_FILTER_CUTOFF_HZ), self.dt) self.previous_measurement = 0.0 def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction): self.torque_params.latAccelFactor = latAccelFactor self.torque_params.latAccelOffset = latAccelOffset self.torque_params.friction = friction self.update_limits() def update_limits(self): self.pid.set_limits(self.lateral_accel_from_torque(self.steer_max, self.torque_params), self.lateral_accel_from_torque(-self.steer_max, self.torque_params)) def update(self, active, CS, VM, params, steer_limited_by_safety, desired_curvature, curvature_limited, lat_delay): pid_log = log.ControlsState.LateralTorqueState.new_message() pid_log.version = VERSION if not active: output_torque = 0.0 pid_log.active = False else: measured_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0)) lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2 delay_frames = int(np.clip(lat_delay / self.dt, 1, self.lat_accel_request_buffer_len)) expected_lateral_accel = self.lat_accel_request_buffer[-delay_frames] lookahead_idx = int(np.clip(-delay_frames + self.lookahead_frames, -self.lat_accel_request_buffer_len+1, -2)) raw_lateral_jerk = (self.lat_accel_request_buffer[lookahead_idx+1] - self.lat_accel_request_buffer[lookahead_idx-1]) / (2 * self.dt) desired_lateral_jerk = self.jerk_filter.update(raw_lateral_jerk) future_desired_lateral_accel = desired_curvature * CS.vEgo ** 2 self.lat_accel_request_buffer.append(future_desired_lateral_accel) gravity_adjusted_future_lateral_accel = future_desired_lateral_accel - roll_compensation setpoint = expected_lateral_accel measurement = measured_curvature * CS.vEgo ** 2 measurement_rate = self.measurement_rate_filter.update((measurement - self.previous_measurement) / self.dt) self.previous_measurement = measurement error = setpoint - measurement + JERK_GAIN * desired_lateral_jerk # do error correction in lateral acceleration space, convert at end to handle non-linear torque responses correctly pid_log.error = float(error) ff = gravity_adjusted_future_lateral_accel # latAccelOffset corrects roll compensation bias from device roll misalignment relative to car roll ff -= self.torque_params.latAccelOffset # TODO remove lateral jerk from feed forward - moving it from error means jerk is not scaled by low speed factor ff += get_friction(error, lateral_accel_deadzone, FRICTION_THRESHOLD, self.torque_params) freeze_integrator = steer_limited_by_safety or CS.steeringPressed or CS.vEgo < 5 output_lataccel = self.pid.update(pid_log.error, -measurement_rate, feedforward=ff, speed=CS.vEgo, freeze_integrator=freeze_integrator) output_torque = self.torque_from_lateral_accel(output_lataccel, self.torque_params) pid_log.active = True pid_log.p = float(self.pid.p) pid_log.i = float(self.pid.i) pid_log.d = float(self.pid.d) pid_log.f = float(self.pid.f) pid_log.output = float(-output_torque) # TODO: log lat accel? pid_log.actualLateralAccel = float(measurement) pid_log.desiredLateralAccel = float(setpoint) pid_log.desiredLateralJerk = float(desired_lateral_jerk) pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_safety, curvature_limited)) # TODO left is positive in this convention return -output_torque, 0.0, pid_log