#include #define PI 3.1415926536 #define deg2rad(d) (d/180.0*PI) const int controlHorizon = 50; const double samplingTime = 0.05; // 20 Hz using namespace std; int main( ) { USING_NAMESPACE_ACADO DifferentialEquation f; DifferentialState xx; // x position DifferentialState yy; // y position DifferentialState psi; // vehicle heading DifferentialState delta; OnlineData curvature_factor; OnlineData v_ref; // m/s OnlineData l_poly_r0, l_poly_r1, l_poly_r2, l_poly_r3; OnlineData r_poly_r0, r_poly_r1, r_poly_r2, r_poly_r3; OnlineData p_poly_r0, p_poly_r1, p_poly_r2, p_poly_r3; OnlineData l_prob, r_prob, p_prob; OnlineData lane_width; Control t; // Equations of motion f << dot(xx) == v_ref * cos(psi); f << dot(yy) == v_ref * sin(psi); f << dot(psi) == v_ref * delta * curvature_factor; f << dot(delta) == t; auto lr_prob = l_prob + r_prob - l_prob * r_prob; auto poly_l = l_poly_r0*(xx*xx*xx) + l_poly_r1*(xx*xx) + l_poly_r2*xx + l_poly_r3; auto poly_r = r_poly_r0*(xx*xx*xx) + r_poly_r1*(xx*xx) + r_poly_r2*xx + r_poly_r3; auto poly_p = p_poly_r0*(xx*xx*xx) + p_poly_r1*(xx*xx) + p_poly_r2*xx + p_poly_r3; auto angle_l = atan(3*l_poly_r0*xx*xx + 2*l_poly_r1*xx + l_poly_r2); auto angle_r = atan(3*r_poly_r0*xx*xx + 2*r_poly_r1*xx + r_poly_r2); auto angle_p = atan(3*p_poly_r0*xx*xx + 2*p_poly_r1*xx + p_poly_r2); auto c_left_lane = exp(-(poly_l - yy)); auto c_right_lane = exp(poly_r - yy); auto r_phantom = poly_l - lane_width/2.0; auto l_phantom = poly_r + lane_width/2.0; auto path = lr_prob * (l_prob * r_phantom + r_prob * l_phantom) / (l_prob + r_prob + 0.0001) + (1-lr_prob) * poly_p; auto angle = lr_prob * (l_prob * angle_l + r_prob * angle_r) / (l_prob + r_prob + 0.0001) + (1-lr_prob) * angle_p; // Running cost Function h; // Distance errors h << path - yy; h << l_prob * c_left_lane; h << r_prob * c_right_lane; // Heading error h << (v_ref + 1.0 ) * (angle - psi); // Angular rate error h << (v_ref + 1.0 ) * t; DMatrix Q(5,5); Q(0,0) = 1.0; Q(1,1) = 1.0; Q(2,2) = 1.0; Q(3,3) = 1.0; Q(4,4) = 0.5; // Terminal cost Function hN; // Distance errors hN << path - yy; hN << l_prob * c_left_lane; hN << r_prob * c_right_lane; // Heading errors hN << (2.0 * v_ref + 1.0 ) * (angle - psi); DMatrix QN(4,4); QN(0,0) = 1.0; QN(1,1) = 1.0; QN(2,2) = 1.0; QN(3,3) = 1.0; // Setup Optimal Control Problem const double tStart = 0.0; const double tEnd = samplingTime * controlHorizon; OCP ocp( tStart, tEnd, controlHorizon ); ocp.subjectTo(f); ocp.minimizeLSQ(Q, h); ocp.minimizeLSQEndTerm(QN, hN); ocp.subjectTo( deg2rad(-90) <= psi <= deg2rad(90)); ocp.subjectTo( deg2rad(-25) <= delta <= deg2rad(25)); ocp.subjectTo( -0.1 <= t <= 0.1); ocp.setNOD(18); OCPexport mpc(ocp); mpc.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON ); mpc.set( DISCRETIZATION_TYPE, MULTIPLE_SHOOTING ); mpc.set( INTEGRATOR_TYPE, INT_RK4 ); mpc.set( NUM_INTEGRATOR_STEPS, 1 * controlHorizon); mpc.set( MAX_NUM_QP_ITERATIONS, 500); mpc.set( SPARSE_QP_SOLUTION, CONDENSING ); mpc.set( QP_SOLVER, QP_QPOASES ); mpc.set( HOTSTART_QP, YES ); mpc.set( GENERATE_TEST_FILE, NO); mpc.set( GENERATE_MAKE_FILE, NO ); mpc.set( GENERATE_MATLAB_INTERFACE, NO ); mpc.set( GENERATE_SIMULINK_INTERFACE, NO ); if (mpc.exportCode( "mpc_export" ) != SUCCESSFUL_RETURN) exit( EXIT_FAILURE ); mpc.printDimensionsQP( ); return EXIT_SUCCESS; }