#!/usr/bin/env python3 import numpy as np from collections import deque from functools import partial import cereal.messaging as messaging from cereal import car, log from cereal.services import SERVICE_LIST from openpilot.common.params import Params from openpilot.common.realtime import config_realtime_process, DT_CTRL from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose MIN_LAG_VEL = 20.0 MAX_SANE_LAG = 3.0 MIN_ABS_YAW_RATE_DEG = 1 MOVING_CORR_WINDOW = 300.0 MIN_OKAY_WINDOW = 25.0 MIN_NCC = 0.95 class Points: def __init__(self, num_points): self.times = deque(maxlen=num_points) self.okay = deque(maxlen=num_points) self.desired = deque(maxlen=num_points) self.actual = deque(maxlen=num_points) @property def num_points(self): return len(self.desired) @property def num_okay(self): return np.count_nonzero(self.okay) def update(self, t, desired, actual, okay): self.times.append(t) self.okay.append(okay) self.desired.append(desired) self.actual.append(actual) def get(self): return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay) class BlockAverage: def __init__(self, num_blocks, block_size, valid_blocks, initial_value): self.num_blocks = num_blocks self.block_size = block_size self.block_idx = 0 self.idx = 0 self.values = np.tile(initial_value, (num_blocks, 1)) self.valid_blocks = valid_blocks def update(self, value): self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size self.idx = (self.idx + 1) % self.block_size if self.idx == 0: self.block_idx = (self.block_idx + 1) % self.num_blocks self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks) def get(self): valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx] if not valid_block_idx: return None return np.mean(self.values[valid_block_idx], axis=0) class LagEstimator: def __init__(self, CP, dt, block_count=10, block_size=100, window_sec=300.0, okay_window_sec=30.0, min_vego=15, min_yr=np.radians(1), min_ncc=0.95): self.dt = dt self.window_sec = window_sec self.okay_window_sec = okay_window_sec self.initial_lag = CP.steerActuatorDelay + 0.2 self.block_size = block_size self.block_count = block_count self.min_vego = min_vego self.min_yr = min_yr self.min_ncc = min_ncc self.t = 0 self.lat_active = False self.steering_pressed = False self.desired_curvature = 0 self.v_ego = 0 self.yaw_rate = 0 self.calibrator = PoseCalibrator() self.reset(self.initial_lag, 0) def reset(self, initial_lag, valid_blocks): window_len = int(self.window_sec / self.dt) self.points = Points(window_len) self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag) self.lag = initial_lag def get_msg(self, valid): msg = messaging.new_message('liveActuatorDelay') msg.valid = valid liveDelay = msg.liveActuatorDelay liveDelay.steerActuatorDelay = self.lag liveDelay.isEstimated = self.block_avg.valid_blocks > 0 liveDelay.validBlocks = self.block_avg.valid_blocks liveDelay.points = self.block_avg.values.tolist() return msg def handle_log(self, t, which, msg): if which == "carControl": self.lat_active = msg.latActive elif which == "carState": self.steering_pressed = msg.steeringPressed self.v_ego = msg.vEgo elif which == "controlsState": self.desired_curvature = msg.desiredCurvature elif which == "liveCalibration": self.calibrator.feed_live_calib(msg) elif which == "livePose": device_pose = Pose.from_live_pose(msg) calibrated_pose = self.calibrator.build_calibrated_pose(device_pose) self.yaw_rate = calibrated_pose.angular_velocity.z self.t = t def points_valid(self): return self.points.num_okay >= int(self.okay_window_sec / self.dt) def update_points(self): okay = self.lat_active and not self.steering_pressed and self.v_ego > self.min_vego and np.abs(self.yaw_rate) >= self.min_yr la_desired = self.desired_curvature * self.v_ego * self.v_ego la_actual_pose = self.yaw_rate * self.v_ego self.points.update(self.t, la_desired, la_actual_pose, okay) if not okay or not self.points_valid(): return times, desired, actual, okay = self.points.get() times_interp = np.arange(times[-1] - self.window_sec, times[-1], DT_CTRL) desired_interp = np.interp(times_interp, times, desired) actual_interp = np.interp(times_interp, times, actual) okay_interp = np.interp(times_interp, times, okay).astype(bool) delay, corr = self.actuator_delay(desired_interp, actual_interp, okay_interp, DT_CTRL) if corr < self.min_ncc: return self.block_avg.update(delay) if (new_lag := self.block_avg.get()) is not None: self.lag = float(new_lag.item()) def correlation_lags(self, sig_len, dt): return np.arange(0, sig_len) * dt def actuator_delay(self, expected_sig, actual_sig, mask, dt, max_lag=1.): """ References: D. Padfield. "Masked FFT registration". In Proc. Computer Vision and Pattern Recognition, pp. 2918-2925 (2010). :DOI:`10.1109/CVPR.2010.5540032` """ eps = np.finfo(np.float64).eps expected_sig = np.asarray(expected_sig, dtype=np.float64) actual_sig = np.asarray(actual_sig, dtype=np.float64) expected_sig[~mask] = 0.0 actual_sig[~mask] = 0.0 rotated_expected_sig = expected_sig[::-1] rotated_mask = mask[::-1] n = len(expected_sig) + len(actual_sig) - 1 fft = partial(np.fft.fft, n=n) actual_sig_fft = fft(actual_sig) rotated_expected_sig_fft = fft(rotated_expected_sig) actual_mask_fft = fft(mask.astype(np.float64)) rotated_mask_fft = fft(rotated_mask.astype(np.float64)) number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples) number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps) masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples actual_squared_fft = fft(actual_sig ** 2) actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0) rotated_expected_squared_fft = fft(rotated_expected_sig ** 2) expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0) denom = np.sqrt(actual_sig_denom * expected_sig_denom) # zero-out samples with very small denominators tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True) nonzero_indices = denom > tol ncc = np.zeros_like(denom, dtype=np.float64) ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices] np.clip(ncc, -1, 1, out=ncc) max_lag_samples = int(max_lag / dt) roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples] max_corr_index = np.argmax(roi_ncc) corr = roi_ncc[max_corr_index] lag = max_corr_index * dt return lag, corr def main(): config_realtime_process([0, 1, 2, 3], 5) pm = messaging.PubMaster(['liveActuatorDelay', 'alertDebug']) sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carControl', 'carState', 'controlsState'], poll='livePose') params = Params() CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams) estimator = LagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency) lag_params = params.get("LiveLag") if lag_params: try: with log.Event.from_bytes(lag_params) as msg: lag_init = msg.liveActuatorDelay.steerActuatorDelay valid_blocks = msg.liveActuatorDelay.validBlocks estimator.reset(lag_init, valid_blocks) except Exception: print("Error reading cached LagParams") while True: sm.update() if sm.all_checks(): for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]): if sm.updated[which]: t = sm.logMonoTime[which] * 1e-9 estimator.handle_log(t, which, sm[which]) estimator.update_points() if sm.frame % 25 == 0: msg = estimator.get_msg(sm.all_checks()) alert_msg = messaging.new_message('alertDebug') alert_msg.alertDebug.alertText1 = f"Lag estimate (fixed: {CP.steerActuatorDelay:.2f} s)" alert_msg.alertDebug.alertText2 = f"{msg.liveActuatorDelay.steerActuatorDelay:.2f} s ({msg.liveActuatorDelay.isEstimated})" pm.send('liveActuatorDelay', msg) pm.send('alertDebug', alert_msg) if msg.liveActuatorDelay.isEstimated: # TODO maybe to often once estimated params.put_nonblocking("LiveLag", msg.to_bytes()) if __name__ == "__main__": main()