import math import numpy as np from selfdrive.controls.lib.pid import PIController from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT from selfdrive.controls.lib.lateral_mpc import libmpc_py from common.numpy_fast import interp from common.realtime import sec_since_boot from selfdrive.swaglog import cloudlog # 100ms is a rule of thumb estimation of lag from image processing to actuator command ACTUATORS_DELAY = 0.1 _DT = 0.01 # 100Hz _DT_MPC = 0.05 # 20Hz def calc_states_after_delay(states, v_ego, steer_angle, curvature_factor, steer_ratio): states[0].x = v_ego * ACTUATORS_DELAY states[0].psi = v_ego * curvature_factor * math.radians(steer_angle) / steer_ratio * ACTUATORS_DELAY return states def get_steer_max(CP, v_ego): return interp(v_ego, CP.steerMaxBP, CP.steerMaxV) class LatControl(object): def __init__(self, VM): self.pid = PIController((VM.CP.steerKpBP, VM.CP.steerKpV), (VM.CP.steerKiBP, VM.CP.steerKiV), k_f=VM.CP.steerKf, pos_limit=1.0) self.last_cloudlog_t = 0.0 self.setup_mpc(VM.CP.steerRateCost) def setup_mpc(self, steer_rate_cost): self.libmpc = libmpc_py.libmpc self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, steer_rate_cost) self.mpc_solution = libmpc_py.ffi.new("log_t *") self.cur_state = libmpc_py.ffi.new("state_t *") self.mpc_updated = False self.mpc_nans = False self.cur_state[0].x = 0.0 self.cur_state[0].y = 0.0 self.cur_state[0].psi = 0.0 self.cur_state[0].delta = 0.0 self.last_mpc_ts = 0.0 self.angle_steers_des = 0.0 self.angle_steers_des_mpc = 0.0 self.angle_steers_des_prev = 0.0 self.angle_steers_des_time = 0.0 def reset(self): self.pid.reset() def update(self, active, v_ego, angle_steers, steer_override, d_poly, angle_offset, VM, PL): cur_time = sec_since_boot() self.mpc_updated = False # TODO: this creates issues in replay when rewinding time: mpc won't run if self.last_mpc_ts < PL.last_md_ts: self.last_mpc_ts = PL.last_md_ts self.angle_steers_des_prev = self.angle_steers_des_mpc curvature_factor = VM.curvature_factor(v_ego) l_poly = libmpc_py.ffi.new("double[4]", list(PL.PP.l_poly)) r_poly = libmpc_py.ffi.new("double[4]", list(PL.PP.r_poly)) p_poly = libmpc_py.ffi.new("double[4]", list(PL.PP.p_poly)) # account for actuation delay self.cur_state = calc_states_after_delay(self.cur_state, v_ego, angle_steers, curvature_factor, VM.CP.steerRatio) v_ego_mpc = max(v_ego, 5.0) # avoid mpc roughness due to low speed self.libmpc.run_mpc(self.cur_state, self.mpc_solution, l_poly, r_poly, p_poly, PL.PP.l_prob, PL.PP.r_prob, PL.PP.p_prob, curvature_factor, v_ego_mpc, PL.PP.lane_width) # reset to current steer angle if not active or overriding if active: delta_desired = self.mpc_solution[0].delta[1] else: delta_desired = math.radians(angle_steers - angle_offset) / VM.CP.steerRatio self.cur_state[0].delta = delta_desired self.angle_steers_des_mpc = float(math.degrees(delta_desired * VM.CP.steerRatio) + angle_offset) self.angle_steers_des_time = cur_time self.mpc_updated = True # Check for infeasable MPC solution self.mpc_nans = np.any(np.isnan(list(self.mpc_solution[0].delta))) t = sec_since_boot() if self.mpc_nans: self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, VM.CP.steerRateCost) self.cur_state[0].delta = math.radians(angle_steers) / VM.CP.steerRatio if t > self.last_cloudlog_t + 5.0: self.last_cloudlog_t = t cloudlog.warning("Lateral mpc - nan: True") if v_ego < 0.3 or not active: output_steer = 0.0 self.pid.reset() else: # TODO: ideally we should interp, but for tuning reasons we keep the mpc solution # constant for 0.05s. #dt = min(cur_time - self.angle_steers_des_time, _DT_MPC + _DT) + _DT # no greater than dt mpc + dt, to prevent too high extraps #self.angle_steers_des = self.angle_steers_des_prev + (dt / _DT_MPC) * (self.angle_steers_des_mpc - self.angle_steers_des_prev) self.angle_steers_des = self.angle_steers_des_mpc steers_max = get_steer_max(VM.CP, v_ego) self.pid.pos_limit = steers_max self.pid.neg_limit = -steers_max steer_feedforward = self.angle_steers_des * v_ego**2 # proportional to realigning tire momentum (~ lateral accel) output_steer = self.pid.update(self.angle_steers_des, angle_steers, check_saturation=(v_ego > 10), override=steer_override, feedforward=steer_feedforward, speed=v_ego) self.sat_flag = self.pid.saturated return output_steer, float(self.angle_steers_des)