#include "lsm6ds3_accel.h" #include #include #include #include "common/swaglog.h" #include "common/timing.h" #include "common/util.h" LSM6DS3_Accel::LSM6DS3_Accel(I2CBus *bus, int gpio_nr, bool shared_gpio) : I2CSensor(bus, gpio_nr, shared_gpio) {} void LSM6DS3_Accel::wait_for_data_ready() { uint8_t drdy = 0; uint8_t buffer[6]; do { read_register(LSM6DS3_ACCEL_I2C_REG_STAT_REG, &drdy, sizeof(drdy)); drdy &= LSM6DS3_ACCEL_DRDY_XLDA; } while (drdy == 0); read_register(LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL, buffer, sizeof(buffer)); } void LSM6DS3_Accel::read_and_avg_data(float* out_buf) { uint8_t drdy = 0; uint8_t buffer[6]; float scaling = 0.061f; if (source == cereal::SensorEventData::SensorSource::LSM6DS3TRC) { scaling = 0.122f; } for (int i = 0; i < 5; i++) { do { read_register(LSM6DS3_ACCEL_I2C_REG_STAT_REG, &drdy, sizeof(drdy)); drdy &= LSM6DS3_ACCEL_DRDY_XLDA; } while (drdy == 0); int len = read_register(LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL, buffer, sizeof(buffer)); assert(len == sizeof(buffer)); for (int j = 0; j < 3; j++) { out_buf[j] += (float)read_16_bit(buffer[j*2], buffer[j*2+1]) * scaling; } } for (int i = 0; i < 3; i++) { out_buf[i] /= 5.0f; } } int LSM6DS3_Accel::self_test(int test_type) { float val_st_off[3] = {0}; float val_st_on[3] = {0}; float test_val[3] = {0}; uint8_t ODR_FS_MO = LSM6DS3_ACCEL_ODR_52HZ; // full scale: +-2g, ODR: 52Hz // prepare sensor for self-test // enable block data update and automatic increment int ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL3_C, LSM6DS3_ACCEL_IF_INC_BDU); if (ret < 0) { return ret; } if (source == cereal::SensorEventData::SensorSource::LSM6DS3TRC) { ODR_FS_MO = LSM6DS3_ACCEL_FS_4G | LSM6DS3_ACCEL_ODR_52HZ; } ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, ODR_FS_MO); if (ret < 0) { return ret; } // wait for stable output, and discard first values util::sleep_for(100); wait_for_data_ready(); read_and_avg_data(val_st_off); // enable Self Test positive (or negative) ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL5_C, test_type); if (ret < 0) { return ret; } // wait for stable output, and discard first values util::sleep_for(100); wait_for_data_ready(); read_and_avg_data(val_st_on); // disable sensor ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, 0); if (ret < 0) { return ret; } // disable self test ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL5_C, 0); if (ret < 0) { return ret; } // calculate the mg values for self test for (int i = 0; i < 3; i++) { test_val[i] = fabs(val_st_on[i] - val_st_off[i]); } // verify test result for (int i = 0; i < 3; i++) { if ((LSM6DS3_ACCEL_MIN_ST_LIMIT_mg > test_val[i]) || (test_val[i] > LSM6DS3_ACCEL_MAX_ST_LIMIT_mg)) { return -1; } } return ret; } int LSM6DS3_Accel::init() { uint8_t value = 0; bool do_self_test = false; const char* env_lsm_selftest =env_lsm_selftest = std::getenv("LSM_SELF_TEST"); if (env_lsm_selftest != nullptr && strncmp(env_lsm_selftest, "1", 1) == 0) { do_self_test = true; } int ret = verify_chip_id(LSM6DS3_ACCEL_I2C_REG_ID, {LSM6DS3_ACCEL_CHIP_ID, LSM6DS3TRC_ACCEL_CHIP_ID}); if (ret == -1) return -1; if (ret == LSM6DS3TRC_ACCEL_CHIP_ID) { source = cereal::SensorEventData::SensorSource::LSM6DS3TRC; } ret = self_test(LSM6DS3_ACCEL_POSITIVE_TEST); if (ret < 0) { LOGE("LSM6DS3 accel positive self-test failed!"); if (do_self_test) goto fail; } ret = self_test(LSM6DS3_ACCEL_NEGATIVE_TEST); if (ret < 0) { LOGE("LSM6DS3 accel negative self-test failed!"); if (do_self_test) goto fail; } ret = init_gpio(); if (ret < 0) { goto fail; } // enable continuous update, and automatic increase ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL3_C, LSM6DS3_ACCEL_IF_INC); if (ret < 0) { goto fail; } // TODO: set scale and bandwidth. Default is +- 2G, 50 Hz ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, LSM6DS3_ACCEL_ODR_104HZ); if (ret < 0) { goto fail; } ret = set_register(LSM6DS3_ACCEL_I2C_REG_DRDY_CFG, LSM6DS3_ACCEL_DRDY_PULSE_MODE); if (ret < 0) { goto fail; } // enable data ready interrupt for accel on INT1 // (without resetting existing interrupts) ret = read_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, &value, 1); if (ret < 0) { goto fail; } value |= LSM6DS3_ACCEL_INT1_DRDY_XL; ret = set_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, value); fail: return ret; } int LSM6DS3_Accel::shutdown() { int ret = 0; // disable data ready interrupt for accel on INT1 uint8_t value = 0; ret = read_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, &value, 1); if (ret < 0) { goto fail; } value &= ~(LSM6DS3_ACCEL_INT1_DRDY_XL); ret = set_register(LSM6DS3_ACCEL_I2C_REG_INT1_CTRL, value); if (ret < 0) { LOGE("Could not disable lsm6ds3 acceleration interrupt!") goto fail; } // enable power-down mode value = 0; ret = read_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, &value, 1); if (ret < 0) { goto fail; } value &= 0x0F; ret = set_register(LSM6DS3_ACCEL_I2C_REG_CTRL1_XL, value); if (ret < 0) { LOGE("Could not power-down lsm6ds3 accelerometer!") goto fail; } fail: return ret; } bool LSM6DS3_Accel::get_event(MessageBuilder &msg, uint64_t ts) { // INT1 shared with gyro, check STATUS_REG who triggered uint8_t status_reg = 0; read_register(LSM6DS3_ACCEL_I2C_REG_STAT_REG, &status_reg, sizeof(status_reg)); if ((status_reg & LSM6DS3_ACCEL_DRDY_XLDA) == 0) { return false; } uint8_t buffer[6]; int len = read_register(LSM6DS3_ACCEL_I2C_REG_OUTX_L_XL, buffer, sizeof(buffer)); assert(len == sizeof(buffer)); float scale = 9.81 * 2.0f / (1 << 15); float x = read_16_bit(buffer[0], buffer[1]) * scale; float y = read_16_bit(buffer[2], buffer[3]) * scale; float z = read_16_bit(buffer[4], buffer[5]) * scale; auto event = msg.initEvent().initAccelerometer(); event.setSource(source); event.setVersion(1); event.setSensor(SENSOR_ACCELEROMETER); event.setType(SENSOR_TYPE_ACCELEROMETER); event.setTimestamp(ts); float xyz[] = {y, -x, z}; auto svec = event.initAcceleration(); svec.setV(xyz); svec.setStatus(true); return true; }