import os import re import uuid import threading from collections import deque import dearpygui.dearpygui as dpg from abc import ABC, abstractmethod from openpilot.tools.jotpluggler.data import DataManager class ViewPanel(ABC): """Abstract base class for all view panels that can be displayed in a plot container""" def __init__(self, panel_id: str = None): self.panel_id = panel_id or str(uuid.uuid4()) self.title = "Untitled Panel" @abstractmethod def create_ui(self, parent_tag: str): pass @abstractmethod def destroy_ui(self): pass @abstractmethod def get_panel_type(self) -> str: pass @abstractmethod def preserve_data(self): pass class TimeSeriesPanel(ViewPanel): def __init__(self, data_manager: DataManager, playback_manager, panel_id: str | None = None): super().__init__(panel_id) self.data_manager = data_manager self.playback_manager = playback_manager self.title = "Time Series Plot" self.plotted_series: set[str] = set() self.plot_tag: str | None = None self.x_axis_tag: str | None = None self.y_axis_tag: str | None = None self.timeline_indicator_tag: str | None = None self._ui_created = False self._preserved_series_data: list[tuple[str, tuple]] = [] # TODO: the way we do this right now doesn't make much sense self._series_legend_tags: dict[str, str] = {} # Maps series_path to legend tag self.data_manager.add_observer(self.on_data_loaded) def preserve_data(self): self._preserved_series_data = [] if self.plotted_series and self._ui_created: for series_path in self.plotted_series: time_value_data = self.data_manager.get_timeseries(series_path) if time_value_data: self._preserved_series_data.append((series_path, time_value_data)) def create_ui(self, parent_tag: str): self.plot_tag = f"plot_{self.panel_id}" self.x_axis_tag = f"{self.plot_tag}_x_axis" self.y_axis_tag = f"{self.plot_tag}_y_axis" self.timeline_indicator_tag = f"{self.plot_tag}_timeline" with dpg.plot(height=-1, width=-1, tag=self.plot_tag, parent=parent_tag, drop_callback=self._on_series_drop, payload_type="TIMESERIES_PAYLOAD"): dpg.add_plot_legend() dpg.add_plot_axis(dpg.mvXAxis, label="", tag=self.x_axis_tag) dpg.add_plot_axis(dpg.mvYAxis, label="", tag=self.y_axis_tag) timeline_series_tag = dpg.add_inf_line_series(x=[0], label="Timeline", parent=self.y_axis_tag, tag=self.timeline_indicator_tag) dpg.bind_item_theme(timeline_series_tag, "global_timeline_theme") # Restore series from preserved data if self._preserved_series_data: self.plotted_series.clear() for series_path, (rel_time_array, value_array) in self._preserved_series_data: self._add_series_with_data(series_path, rel_time_array, value_array) self._preserved_series_data = [] self._ui_created = True def update_timeline_indicator(self, current_time_s: float): if not self._ui_created or not dpg.does_item_exist(self.timeline_indicator_tag): return dpg.set_value(self.timeline_indicator_tag, [[current_time_s], [0]]) # vertical line position if self.plotted_series: # update legend labels with current values for series_path in self.plotted_series: value = self.data_manager.get_value_at(series_path, current_time_s) if value is not None: if isinstance(value, (int, float)): if isinstance(value, float): formatted_value = f"{value:.4f}" if abs(value) < 1000 else f"{value:.3e}" else: formatted_value = str(value) else: formatted_value = str(value) series_tag = f"series_{self.panel_id}_{series_path.replace('/', '_')}" legend_label = f"{series_path}: {formatted_value}" if dpg.does_item_exist(series_tag): dpg.configure_item(series_tag, label=legend_label) def _add_series_with_data(self, series_path: str, rel_time_array, value_array) -> bool: if series_path in self.plotted_series: return False series_tag = f"series_{self.panel_id}_{series_path.replace('/', '_')}" line_series_tag = dpg.add_line_series(x=rel_time_array.tolist(), y=value_array.tolist(), label=series_path, parent=self.y_axis_tag, tag=series_tag) dpg.bind_item_theme(line_series_tag, "global_line_theme") self.plotted_series.add(series_path) dpg.fit_axis_data(self.x_axis_tag) dpg.fit_axis_data(self.y_axis_tag) return True def destroy_ui(self): if self.plot_tag and dpg.does_item_exist(self.plot_tag): dpg.delete_item(self.plot_tag) self._series_legend_tags.clear() self._ui_created = False def get_panel_type(self) -> str: return "timeseries" def add_series(self, series_path: str) -> bool: if series_path in self.plotted_series: return False time_value_data = self.data_manager.get_timeseries(series_path) if time_value_data is None: return False rel_time_array, value_array = time_value_data return self._add_series_with_data(series_path, rel_time_array, value_array) def clear_all_series(self): for series_path in self.plotted_series.copy(): self.remove_series(series_path) def remove_series(self, series_path: str): if series_path in self.plotted_series: series_tag = f"series_{self.panel_id}_{series_path.replace('/', '_')}" if dpg.does_item_exist(series_tag): dpg.delete_item(series_tag) self.plotted_series.remove(series_path) if series_path in self._series_legend_tags: del self._series_legend_tags[series_path] def on_data_loaded(self, data: dict): for series_path in self.plotted_series.copy(): self._update_series_data(series_path) def _update_series_data(self, series_path: str) -> bool: time_value_data = self.data_manager.get_timeseries(series_path) if time_value_data is None: return False rel_time_array, value_array = time_value_data series_tag = f"series_{self.panel_id}_{series_path.replace('/', '_')}" if dpg.does_item_exist(series_tag): dpg.set_value(series_tag, [rel_time_array.tolist(), value_array.tolist()]) dpg.fit_axis_data(self.x_axis_tag) dpg.fit_axis_data(self.y_axis_tag) return True else: self.plotted_series.discard(series_path) return False def _on_series_drop(self, sender, app_data, user_data): series_path = app_data self.add_series(series_path) class DataTreeNode: def __init__(self, name: str, full_path: str = ""): self.name = name self.full_path = full_path self.children: dict[str, DataTreeNode] = {} self.is_leaf = False self.child_count = 0 self.is_plottable_cached = None self.ui_created = False self.ui_tag: str | None = None class DataTreeView: MAX_ITEMS_PER_FRAME = 50 def __init__(self, data_manager: DataManager, ui_lock: threading.Lock): self.data_manager = data_manager self.ui_lock = ui_lock self.current_search = "" self.data_tree = DataTreeNode(name="root") self.ui_render_queue: deque[tuple[DataTreeNode, str, str, bool]] = deque() # (node, parent_tag, search_term, is_leaf) self.visible_expanded_nodes: set[str] = set() self.created_leaf_paths: set[str] = set() self._all_paths_cache: list[str] = [] self.data_manager.add_observer(self._on_data_loaded) def _on_data_loaded(self, data: dict): if data.get('loading_complete'): with self.ui_lock: self._all_paths_cache = self.data_manager.get_all_paths() self._populate_tree() def update_frame(self): items_processed = 0 while self.ui_render_queue and items_processed < self.MAX_ITEMS_PER_FRAME: # process up to MAX_ITEMS_PER_FRAME to maintain perforamnce node, parent_tag, search_term, is_leaf = self.ui_render_queue.popleft() if is_leaf: self._create_leaf_ui(node, parent_tag) else: self._create_node_ui(node, parent_tag, search_term) items_processed += 1 def search_data(self, search_term: str): self.current_search = search_term self._all_paths_cache = self.data_manager.get_all_paths() self._populate_tree() def _populate_tree(self): self._clear_ui() search_term = self.current_search.strip().lower() self.data_tree = self._build_tree_structure(search_term) for child in sorted(self.data_tree.children.values(), key=self._natural_sort_key): # queue top level nodes self.ui_render_queue.append((child, "data_tree_container", search_term, child.is_leaf)) def _clear_ui(self): dpg.delete_item("data_tree_container", children_only=True) self.ui_render_queue.clear() self.visible_expanded_nodes.clear() self.created_leaf_paths.clear() def _build_tree_structure(self, search_term: str) -> DataTreeNode: root = DataTreeNode(name="root") for path in sorted(self._all_paths_cache): if not self._should_show_path(path, search_term): continue parts = path.split('/') current_node = root current_path_prefix = "" for part in parts: current_path_prefix = f"{current_path_prefix}/{part}" if current_path_prefix else part if part not in current_node.children: current_node.children[part] = DataTreeNode(name=part, full_path=current_path_prefix) current_node = current_node.children[part] current_node.is_leaf = True self._calculate_child_counts(root) return root def _calculate_child_counts(self, node: DataTreeNode): if node.is_leaf: node.child_count = 0 else: node.child_count = len(node.children) for child in node.children.values(): self._calculate_child_counts(child) def _create_node_ui(self, node: DataTreeNode, parent_tag: str, search_term: str): if node.is_leaf: self._create_leaf_ui(node, parent_tag) else: self._create_tree_node_ui(node, parent_tag, search_term) def _create_tree_node_ui(self, node: DataTreeNode, parent_tag: str, search_term: str): node_tag = f"tree_{node.full_path}" node.ui_tag = node_tag label = f"{node.name} ({node.child_count} fields)" should_open = (bool(search_term) and len(search_term) > 1 and any(search_term in path for path in self._get_descendant_paths(node))) with dpg.tree_node(label=label, parent=parent_tag, tag=node_tag, default_open=should_open, open_on_arrow=True, open_on_double_click=True) as tree_node: with dpg.item_handler_registry() as handler: dpg.add_item_toggled_open_handler(callback=lambda s, d, u: self._on_node_expanded(node, search_term)) dpg.bind_item_handler_registry(tree_node, handler) node.ui_created = True if should_open: self.visible_expanded_nodes.add(node.full_path) self._queue_children(node, node_tag, search_term) def _create_leaf_ui(self, node: DataTreeNode, parent_tag: str): half_split_size = dpg.get_item_rect_size("data_pool_window")[0] // 2 with dpg.group(parent=parent_tag, horizontal=True, xoffset=half_split_size, tag=f"group_{node.full_path}") as draggable_group: dpg.add_text(node.name) dpg.add_text("N/A", tag=f"value_{node.full_path}") if node.is_plottable_cached is None: node.is_plottable_cached = self.data_manager.is_plottable(node.full_path) if node.is_plottable_cached: with dpg.drag_payload(parent=draggable_group, drag_data=node.full_path, payload_type="TIMESERIES_PAYLOAD"): dpg.add_text(f"Plot: {node.full_path}") node.ui_created = True node.ui_tag = f"value_{node.full_path}" self.created_leaf_paths.add(node.full_path) def _queue_children(self, node: DataTreeNode, parent_tag: str, search_term: str): for child in sorted(node.children.values(), key=self._natural_sort_key): self.ui_render_queue.append((child, parent_tag, search_term, child.is_leaf)) def _on_node_expanded(self, node: DataTreeNode, search_term: str): node_tag = f"tree_{node.full_path}" if not dpg.does_item_exist(node_tag): return is_expanded = dpg.get_value(node_tag) if is_expanded: if node.full_path not in self.visible_expanded_nodes: self.visible_expanded_nodes.add(node.full_path) self._queue_children(node, node_tag, search_term) else: self.visible_expanded_nodes.discard(node.full_path) self._remove_children_from_queue(node.full_path) def _remove_children_from_queue(self, collapsed_node_path: str): new_queue = deque() for node, parent_tag, search_term, is_leaf in self.ui_render_queue: # Keep items that are not children of the collapsed node if not node.full_path.startswith(collapsed_node_path + "/"): new_queue.append((node, parent_tag, search_term, is_leaf)) self.ui_render_queue = new_queue def _should_show_path(self, path: str, search_term: str) -> bool: if 'DEPRECATED' in path and not os.environ.get('SHOW_DEPRECATED'): return False return not search_term or search_term in path.lower() def _natural_sort_key(self, node: DataTreeNode): node_type_key = node.is_leaf parts = [int(p) if p.isdigit() else p.lower() for p in re.split(r'(\d+)', node.name) if p] return (node_type_key, parts) def _get_descendant_paths(self, node: DataTreeNode): for child_name, child_node in node.children.items(): child_name_lower = child_name.lower() if child_node.is_leaf: yield child_name_lower else: for path in self._get_descendant_paths(child_node): yield f"{child_name_lower}/{path}"