// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors // Licensed under the MIT License: // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #ifndef CAPNP_ORPHAN_H_ #define CAPNP_ORPHAN_H_ #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS) #pragma GCC system_header #endif #include "layout.h" namespace capnp { class StructSchema; class ListSchema; struct DynamicStruct; struct DynamicList; namespace _ { struct OrphanageInternal; } template class Orphan { // Represents an object which is allocated within some message builder but has no pointers // pointing at it. An Orphan can later be "adopted" by some other object as one of that object's // fields, without having to copy the orphan. For a field `foo` of pointer type, the generated // code will define builder methods `void adoptFoo(Orphan)` and `Orphan disownFoo()`. // Orphans can also be created independently of any parent using an Orphanage. // // `Orphan` can be moved but not copied, like `Own`, so that it is impossible for one // orphan to be adopted multiple times. If an orphan is destroyed without being adopted, its // contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space // in a message arena). public: Orphan() = default; KJ_DISALLOW_COPY(Orphan); Orphan(Orphan&&) = default; Orphan& operator=(Orphan&&) = default; inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {} inline BuilderFor get(); // Get the underlying builder. If the orphan is null, this will allocate and return a default // object rather than crash. This is done for security -- otherwise, you might enable a DoS // attack any time you disown a field and fail to check if it is null. In the case of structs, // this means that the orphan is no longer null after get() returns. In the case of lists, // no actual object is allocated since a simple empty ListBuilder can be returned. inline ReaderFor getReader() const; inline bool operator==(decltype(nullptr)) const { return builder == nullptr; } inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; } inline void truncate(uint size); // Resize an object (which must be a list or a blob) to the given size. // // If the new size is less than the original, the remaining elements will be discarded. The // list is never moved in this case. If the list happens to be located at the end of its segment // (which is always true if the list was the last thing allocated), the removed memory will be // reclaimed (reducing the messag size), otherwise it is simply zeroed. The reclaiming behavior // is particularly useful for allocating buffer space when you aren't sure how much space you // actually need: you can pre-allocate, say, a 4k byte array, read() from a file into it, and // then truncate it back to the amount of space actually used. // // If the new size is greater than the original, the list is extended with default values. If // the list is the last object in its segment *and* there is enough space left in the segment to // extend it to cover the new values, then the list is extended in-place. Otherwise, it must be // moved to a new location, leaving a zero'd hole in the previous space that won't be filled. // This copy is shallow; sub-objects will simply be reparented, not copied. // // Any existing readers or builders pointing at the object are invalidated by this call (even if // it doesn't move). You must call `get()` or `getReader()` again to get the new, valid pointer. private: _::OrphanBuilder builder; template friend struct _::PointerHelpers; template friend struct List; template friend class Orphan; friend class Orphanage; friend class MessageBuilder; }; class Orphanage: private kj::DisallowConstCopy { // Use to directly allocate Orphan objects, without having a parent object allocate and then // disown the object. public: inline Orphanage(): arena(nullptr) {} template static Orphanage getForMessageContaining(BuilderType builder); // Construct an Orphanage that allocates within the message containing the given Builder. This // allows the constructed Orphans to be adopted by objects within said message. // // This constructor takes the builder rather than having the builder have a getOrphanage() method // because this is an advanced feature and we don't want to pollute the builder APIs with it. // // Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its // `getOrphanage()` method. template Orphan newOrphan() const; // Allocate a new orphaned struct. template Orphan newOrphan(uint size) const; // Allocate a new orphaned list or blob. Orphan newOrphan(StructSchema schema) const; // Dynamically create an orphan struct with the given schema. You must // #include to use this. Orphan newOrphan(ListSchema schema, uint size) const; // Dynamically create an orphan list with the given schema. You must #include // to use this. template Orphan> newOrphanCopy(Reader copyFrom) const; // Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the // given object. template Orphan>>> newOrphanConcat(kj::ArrayPtr lists) const; template Orphan>>> newOrphanConcat(kj::ArrayPtr lists) const; // Given an array of List readers, copy and concatenate the lists, creating a new Orphan. // // Note that compared to allocating the list yourself and using `setWithCaveats()` to set each // item, this method avoids the "caveats": the new list will be allocated with the element size // being the maximum of that from all the input lists. This is particularly important when // concatenating struct lists: if the lists were created using a newer version of the protocol // in which some new fields had been added to the struct, using `setWithCaveats()` would // truncate off those new fields. Orphan referenceExternalData(Data::Reader data) const; // Creates an Orphan that points at an existing region of memory (e.g. from another message) // without copying it. There are some SEVERE restrictions on how this can be used: // - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is // abandoned). // - Because the data is const, you will not be allowed to obtain a `Data::Builder` // for this blob. Any call which would return such a builder will throw an exception. You // can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once // the orphan is adopted). It is your responsibility to make sure your code can deal with // these problems when using this optimization; if you can't, allocate a copy instead. // - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on // the CPU). Any pointer returned by malloc() as well as any data blob obtained from another // Cap'n Proto message satisfies this. // - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte // boundary will be visible in the raw message when it is written out. Thus, there must be no // secrets in these bytes. Data blobs obtained from other Cap'n Proto messages should be safe // as these bytes should be zero (unless the sender had the same problem). // // The array will actually become one of the message's segments. The data can thus be adopted // into the message tree without copying it. This is particularly useful when referencing very // large blobs, such as whole mmap'd files. private: _::BuilderArena* arena; _::CapTableBuilder* capTable; inline explicit Orphanage(_::BuilderArena* arena, _::CapTableBuilder* capTable) : arena(arena), capTable(capTable) {} template struct GetInnerBuilder; template struct GetInnerReader; template struct NewOrphanListImpl; friend class MessageBuilder; friend struct _::OrphanageInternal; }; // ======================================================================================= // Inline implementation details. namespace _ { // private template struct OrphanGetImpl; template struct OrphanGetImpl { static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, _::elementSizeForType()); } }; template struct OrphanGetImpl { static inline typename T::Builder apply(_::OrphanBuilder& builder) { return typename T::Builder(builder.asStruct(_::structSize())); } static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) { return typename T::Reader(builder.asStructReader(_::structSize())); } static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, _::structSize()); } }; #if !CAPNP_LITE template struct OrphanGetImpl { static inline typename T::Client apply(_::OrphanBuilder& builder) { return typename T::Client(builder.asCapability()); } static inline typename T::Client applyReader(const _::OrphanBuilder& builder) { return typename T::Client(builder.asCapability()); } static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, ElementSize::POINTER); } }; #endif // !CAPNP_LITE template struct OrphanGetImpl, Kind::LIST> { static inline typename List::Builder apply(_::OrphanBuilder& builder) { return typename List::Builder(builder.asList(_::ElementSizeForType::value)); } static inline typename List::Reader applyReader(const _::OrphanBuilder& builder) { return typename List::Reader(builder.asListReader(_::ElementSizeForType::value)); } static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, ElementSize::POINTER); } }; template struct OrphanGetImpl, Kind::LIST> { static inline typename List::Builder apply(_::OrphanBuilder& builder) { return typename List::Builder(builder.asStructList(_::structSize())); } static inline typename List::Reader applyReader(const _::OrphanBuilder& builder) { return typename List::Reader(builder.asListReader(_::ElementSizeForType::value)); } static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, ElementSize::POINTER); } }; template <> struct OrphanGetImpl { static inline Text::Builder apply(_::OrphanBuilder& builder) { return Text::Builder(builder.asText()); } static inline Text::Reader applyReader(const _::OrphanBuilder& builder) { return Text::Reader(builder.asTextReader()); } static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, ElementSize::POINTER); } }; template <> struct OrphanGetImpl { static inline Data::Builder apply(_::OrphanBuilder& builder) { return Data::Builder(builder.asData()); } static inline Data::Reader applyReader(const _::OrphanBuilder& builder) { return Data::Reader(builder.asDataReader()); } static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { builder.truncate(size, ElementSize::POINTER); } }; struct OrphanageInternal { static inline _::BuilderArena* getArena(Orphanage orphanage) { return orphanage.arena; } static inline _::CapTableBuilder* getCapTable(Orphanage orphanage) { return orphanage.capTable; } }; } // namespace _ (private) template inline BuilderFor Orphan::get() { return _::OrphanGetImpl::apply(builder); } template inline ReaderFor Orphan::getReader() const { return _::OrphanGetImpl::applyReader(builder); } template inline void Orphan::truncate(uint size) { _::OrphanGetImpl>::truncateListOf(builder, bounded(size) * ELEMENTS); } template <> inline void Orphan::truncate(uint size) { builder.truncateText(bounded(size) * ELEMENTS); } template <> inline void Orphan::truncate(uint size) { builder.truncate(bounded(size) * ELEMENTS, ElementSize::BYTE); } template struct Orphanage::GetInnerBuilder { static inline _::StructBuilder apply(typename T::Builder& t) { return t._builder; } }; template struct Orphanage::GetInnerBuilder { static inline _::ListBuilder apply(typename T::Builder& t) { return t.builder; } }; template Orphanage Orphanage::getForMessageContaining(BuilderType builder) { auto inner = GetInnerBuilder>::apply(builder); return Orphanage(inner.getArena(), inner.getCapTable()); } template Orphan Orphanage::newOrphan() const { return Orphan(_::OrphanBuilder::initStruct(arena, capTable, _::structSize())); } template struct Orphanage::NewOrphanListImpl> { static inline _::OrphanBuilder apply( _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { return _::OrphanBuilder::initList( arena, capTable, bounded(size) * ELEMENTS, _::ElementSizeForType::value); } }; template struct Orphanage::NewOrphanListImpl> { static inline _::OrphanBuilder apply( _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { return _::OrphanBuilder::initStructList( arena, capTable, bounded(size) * ELEMENTS, _::structSize()); } }; template <> struct Orphanage::NewOrphanListImpl { static inline _::OrphanBuilder apply( _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { return _::OrphanBuilder::initText(arena, capTable, bounded(size) * BYTES); } }; template <> struct Orphanage::NewOrphanListImpl { static inline _::OrphanBuilder apply( _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { return _::OrphanBuilder::initData(arena, capTable, bounded(size) * BYTES); } }; template Orphan Orphanage::newOrphan(uint size) const { return Orphan(NewOrphanListImpl::apply(arena, capTable, size)); } template struct Orphanage::GetInnerReader { static inline _::StructReader apply(const typename T::Reader& t) { return t._reader; } }; template struct Orphanage::GetInnerReader { static inline _::ListReader apply(const typename T::Reader& t) { return t.reader; } }; template struct Orphanage::GetInnerReader { static inline const typename T::Reader& apply(const typename T::Reader& t) { return t; } }; template inline Orphan> Orphanage::newOrphanCopy(Reader copyFrom) const { return Orphan>(_::OrphanBuilder::copy( arena, capTable, GetInnerReader>::apply(copyFrom))); } template inline Orphan>>> Orphanage::newOrphanConcat(kj::ArrayPtr lists) const { return newOrphanConcat(kj::implicitCast>(lists)); } template inline Orphan>>> Orphanage::newOrphanConcat(kj::ArrayPtr lists) const { // Optimization / simplification: Rely on List::Reader containing nothing except a // _::ListReader. static_assert(sizeof(T) == sizeof(_::ListReader), "lists are not bare readers?"); kj::ArrayPtr raw( reinterpret_cast(lists.begin()), lists.size()); typedef ListElementType> Element; return Orphan>( _::OrphanBuilder::concat(arena, capTable, _::elementSizeForType(), _::minStructSizeForElement(), raw)); } inline Orphan Orphanage::referenceExternalData(Data::Reader data) const { return Orphan(_::OrphanBuilder::referenceExternalData(arena, data)); } } // namespace capnp #endif // CAPNP_ORPHAN_H_