import numpy as np import math from common.numpy_fast import interp _K_CURV_V = [1., 0.6] _K_CURV_BP = [0., 0.002] # lane width http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm _LANE_WIDTH_V = [3., 3.8] # break points of speed _LANE_WIDTH_BP = [0., 31.] def calc_d_lookahead(v_ego, d_poly): # this function computes how far too look for lateral control # howfar we look ahead is function of speed and how much curvy is the path offset_lookahead = 1. k_lookahead = 7. # integrate abs value of second derivative of poly to get a measure of path curvature pts_len = 50. # m if len(d_poly) > 0: pts = np.polyval([6 * d_poly[0], 2 * d_poly[1]], np.arange(0, pts_len)) else: pts = 0. curv = np.sum(np.abs(pts)) / pts_len k_curv = interp(curv, _K_CURV_BP, _K_CURV_V) # sqrt on speed is needed to keep, for a given curvature, the y_des # proportional to speed. Indeed, y_des is prop to d_lookahead^2 # 36m at 25m/s d_lookahead = offset_lookahead + math.sqrt(max(v_ego, 0)) * k_lookahead * k_curv return d_lookahead def calc_lookahead_offset(v_ego, angle_steers, d_lookahead, VM, angle_offset): # this function returns the lateral offset given the steering angle, speed and the lookahead distance sa = math.radians(angle_steers - angle_offset) curvature = VM.calc_curvature(sa, v_ego) # clip is to avoid arcsin NaNs due to too sharp turns y_actual = d_lookahead * np.tan(np.arcsin(np.clip(d_lookahead * curvature, -0.999, 0.999)) / 2.) return y_actual, curvature def calc_desired_steer_angle(v_ego, y_des, d_lookahead, VM, angle_offset): # inverse of the above function curvature = np.sin(np.arctan(y_des / d_lookahead) * 2.) / d_lookahead steer_des = math.degrees(VM.get_steer_from_curvature(curvature, v_ego)) + angle_offset return steer_des, curvature def compute_path_pinv(): deg = 3 x = np.arange(50.0) X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T pinv = np.linalg.pinv(X) return pinv def model_polyfit(points, path_pinv): return np.dot(path_pinv, map(float, points)) def calc_desired_path(l_poly, r_poly, p_poly, l_prob, r_prob, p_prob, speed, lane_width=None): # this function computes the poly for the center of the lane, averaging left and right polys if lane_width is None: lane_width = interp(speed, _LANE_WIDTH_BP, _LANE_WIDTH_V) # lanes in US are ~3.6m wide half_lane_poly = np.array([0., 0., 0., lane_width / 2.]) if l_prob + r_prob > 0.01: c_poly = ((l_poly - half_lane_poly) * l_prob + (r_poly + half_lane_poly) * r_prob) / (l_prob + r_prob) c_prob = l_prob + r_prob - l_prob * r_prob else: c_poly = np.zeros(4) c_prob = 0. p_weight = 1. # predicted path weight relatively to the center of the lane d_poly = list((c_poly * c_prob + p_poly * p_prob * p_weight) / (c_prob + p_prob * p_weight)) return d_poly, c_poly, c_prob