#!/usr/bin/env python3 from cereal import car from selfdrive.swaglog import cloudlog from selfdrive.config import Conversions as CV from selfdrive.car.ford.values import MAX_ANGLE, Ecu, ECU_FINGERPRINT, FINGERPRINTS from selfdrive.car import STD_CARGO_KG, scale_rot_inertia, scale_tire_stiffness, is_ecu_disconnected, gen_empty_fingerprint from selfdrive.car.interfaces import CarInterfaceBase class CarInterface(CarInterfaceBase): @staticmethod def compute_gb(accel, speed): return float(accel) / 3.0 @staticmethod def get_params(candidate, fingerprint=gen_empty_fingerprint(), has_relay=False, car_fw=[]): ret = CarInterfaceBase.get_std_params(candidate, fingerprint, has_relay) ret.carName = "ford" ret.safetyModel = car.CarParams.SafetyModel.ford ret.dashcamOnly = True ret.wheelbase = 2.85 ret.steerRatio = 14.8 ret.mass = 3045. * CV.LB_TO_KG + STD_CARGO_KG ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01], [0.005]] # TODO: tune this ret.lateralTuning.pid.kf = 1. / MAX_ANGLE # MAX Steer angle to normalize FF ret.steerActuatorDelay = 0.1 # Default delay, not measured yet ret.steerLimitTimer = 0.8 ret.steerRateCost = 1.0 ret.centerToFront = ret.wheelbase * 0.44 tire_stiffness_factor = 0.5328 # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, tire_stiffness_factor=tire_stiffness_factor) ret.steerControlType = car.CarParams.SteerControlType.angle ret.enableCamera = is_ecu_disconnected(fingerprint[0], FINGERPRINTS, ECU_FINGERPRINT, candidate, Ecu.fwdCamera) or has_relay cloudlog.warning("ECU Camera Simulated: %r", ret.enableCamera) return ret # returns a car.CarState def update(self, c, can_strings): # ******************* do can recv ******************* self.cp.update_strings(can_strings) ret = self.CS.update(self.cp) ret.canValid = self.cp.can_valid # events events = self.create_common_events(ret) if self.CS.lkas_state not in [2, 3] and ret.vEgo > 13.* CV.MPH_TO_MS and ret.cruiseState.enabled: events.add(car.CarEvent.EventName.steerTempUnavailableMute) ret.events = events.to_msg() self.CS.out = ret.as_reader() return self.CS.out # pass in a car.CarControl # to be called @ 100hz def apply(self, c): can_sends = self.CC.update(c.enabled, self.CS, self.frame, c.actuators, c.hudControl.visualAlert, c.cruiseControl.cancel) self.frame += 1 return can_sends