import math, functools, operator from tinygrad.uop.ops import UOp, Ops, sint, PatternMatcher, UPat, KernelInfo, ssimplify, AxisType, sint_to_uop from tinygrad.helpers import all_int, dedup, get_contraction from tinygrad.dtype import dtypes, AddrSpace, Invalid from tinygrad.renderer import Renderer def _group_dims(dims:tuple[sint, ...], max_sizes:tuple[int, ...]): # TODO: symbolic shape if not all_int(dims): return dims while len(dims) > len(max_sizes) or any(d > m for d,m in zip(dims, max_sizes)): for i,m in enumerate(max_sizes): if i < (len(dims)-1) and dims[i] * dims[i+1] <= m: dims = dims[:i] + (dims[i]*dims[i+1],) + dims[i+2:] break else: return None return dims def _split_dims(dims, max_sizes): if all(d <= m for d,m in zip(dims, max_sizes)): return dims _dims = list(dims) + [1]*(3-len(dims)) for i in range(len(_dims)): while _dims[i] > max_sizes[i]: div = next((d for d in range(2, math.ceil(math.sqrt(_dims[i])) + 1) if (_dims[i] % d) == 0), 1) if div == 1: raise RuntimeError(f"cannot limit dim {dims=}, {max_sizes=}") _dims[i], _dims[(i+1)%len(_dims)] = _dims[i]//div, _dims[(i+1)%len(_dims)]*div return tuple(_dims[:2] if _dims[2] == 1 else _dims[0] if _dims[1:3] == [1,1] else _dims) def get_grouped_dims(prefix, dims:tuple[sint, ...], max_sizes:tuple[int, ...]|None, reverse=False) -> list[UOp]: if reverse: return get_grouped_dims(prefix, dims[::-1], max_sizes)[::-1] if max_sizes is None: limited = dims else: # try to group first: (a, b, c, d) -> (ab, c, d) limited = grouped if (grouped := _group_dims(dims, max_sizes)) else dims # check if grouping failed if len(limited) > len(max_sizes): raise RuntimeError(f"cannot limit dim {dims=}, {max_sizes=}") # try to split up dims: (a,) -> (b, c) if limited == dims: limited = _split_dims(dims, max_sizes) raw_idxs = [UOp(Ops.SPECIAL, dtypes.index, (sint_to_uop(s),), (f"{prefix}{i}")) for i,s in enumerate(limited)] if len(limited) < len(dims): ret = [] if (contraction:=get_contraction(dims, limited)) is None: raise RuntimeError(f"get_contraction should not be None {dims=} {limited=}") for idx, contraction_group in zip(raw_idxs, contraction): for c in contraction_group[:-1]: ret.append(idx % dims[c]) idx //= dims[c] ret.append(idx) return ret elif (a:=len(limited)) > (b:=len(dims)): if a == 2 and b == 1: return [raw_idxs[0] * limited[1] + raw_idxs[1]] if a == 3 and b == 1: return [(raw_idxs[0] * limited[1] + raw_idxs[1]) * limited[2] + raw_idxs[2]] if a == 3 and b == 2: return [raw_idxs[0] * limited[1] + raw_idxs[1], raw_idxs[2]] elif limited != dims: # Convert to 1D flat = raw_idxs[0]*limited[1]+raw_idxs[1] if len(dims) == 2 else raw_idxs[0]*(limited[1]*limited[2])+raw_idxs[1]*limited[2]+raw_idxs[2] # Get back original indices from 1D return [flat//dims[1], flat%dims[1]] if len(dims) == 2 else [flat//(dims[2]*dims[1]), (flat//dims[2])%dims[1], flat%dims[2]] return raw_idxs def add_gpudims(ctx:Renderer, s:UOp): if s.arg is None: return None s_topo = list(s.toposort()) if any(x.op is Ops.SPECIAL for x in s_topo): return None # get ranges all_ranges = {x.arg[0:-1]:x for x in s_topo if x.op is Ops.RANGE} # extract global/local dims global_dims = sorted(dedup([x.arg[0:-1] for x in all_ranges.values() if x.arg[-1] in (AxisType.GLOBAL, AxisType.THREAD)])) local_dims = sorted(dedup([x.arg[0:-1] for x in all_ranges.values() if x.arg[-1] in (AxisType.WARP, AxisType.LOCAL, AxisType.GROUP_REDUCE)])) if not global_dims and not local_dims: return None # get global and local shape ranges = [all_ranges[r] for r in global_dims+local_dims if r in all_ranges] global_shape = tuple([ssimplify(r.src[0]) for r in ranges if r.arg[0:-1] in global_dims]) local_shape = tuple([ssimplify(r.src[0]) for r in ranges if r.arg[0:-1] in local_dims]) # get the idxs ki: KernelInfo = s.arg if ki.dont_use_locals: assert not local_dims, "can't use locals if there's no local dims" idxs = get_grouped_dims("idx", global_shape, ctx.global_max, reverse=True) else: # define indexes for GPU-like execution idxs = get_grouped_dims("gidx", global_shape, ctx.global_max, reverse=True) + get_grouped_dims("lidx", local_shape, ctx.local_max) # apply to multiple ranges subs = {} for r in s_topo: # look for local INDEXes that are not used in the GLOBAL store, then add them as an INVALID if r.op is Ops.STORE and r.buf_target().ptrdtype.addrspace == AddrSpace.GLOBAL: idx = r.src[0] missing_locals = [all_ranges[rng] for rng in local_dims if all_ranges[rng] not in idx.ranges] if len(missing_locals): assert len(idx.src) == 2, "index has 2 sources" mask: UOp = functools.reduce(operator.and_, [x.eq(0) for x in missing_locals]) subs[idx] = idx.replace(src=(idx.src[0], mask.broadcast(idx.src[1].dtype.count).where(idx.src[1], Invalid))) if r.op is not Ops.RANGE: continue try: ii = (global_dims+local_dims).index(r.arg[0:-1]) if r.arg[1] == AxisType.REDUCE: continue subs[r] = idxs[ii] except ValueError: continue return s.substitute(subs) pm_add_gpudims = PatternMatcher([ # add gpudims must be last (UPat(Ops.SINK, name="s"), add_gpudims), ])