import functools from tinygrad.device import Compiled, Compiler, Allocator from tinygrad.engine.jit import MultiGraphRunner from tinygrad.renderer.cstyle import Renderer, CStyleLanguage from tinygrad.renderer.llvmir import AMDLLVMRenderer from tinygrad.uop.ops import Ops from tinygrad.helpers import cpu_profile, EMULATE class NullRenderer(CStyleLanguage): device = "NULL" has_local = False float4 = "float4" barrier = "// BARRIER" code_for_op = {**CStyleLanguage.code_for_op, Ops.THREEFRY: lambda a,b,dtype: f"threefry({a},{b})", Ops.MAX: lambda a,b,dtype: f"max({a},{b})"} class NullProgram: def __init__(self, device:str, name:str, lib:bytes): self.device, self.name = device, name def __call__(self, *bufs, global_size:tuple[int,int,int]=(1,1,1), local_size:tuple[int,int,int]=(1,1,1), vals:tuple[int, ...]=(), wait=False): with cpu_profile(self.name, self.device): return 1e-3 class NullAllocator(Allocator['NullDevice']): def _alloc(self, size, options): pass def _copyin(self, dest, src:memoryview): pass def _copyout(self, dest:memoryview, src): pass def _transfer(self, dest, src, sz:int, src_dev, dest_dev): with cpu_profile(f"{src_dev.device} -> {dest_dev.device}", self.dev.device): pass def _offset(self, buf, offset:int, size:int): pass class NullGraph(MultiGraphRunner): def __call__(self, input_rawbuffers, var_vals, wait=False) -> float|None: return 1e-1 class NullDevice(Compiled): def __init__(self, device:str): renderer:functools.partial|type[Renderer] match str(EMULATE.value): case "AMD": renderer = functools.partial(AMDLLVMRenderer, "gfx1100") case "AMD_RDNA4": renderer = functools.partial(AMDLLVMRenderer, "gfx1201") case "": renderer = NullRenderer case _: raise RuntimeError(f"can't EMULATE device: {EMULATE.value}") super().__init__(device, NullAllocator(self), [(renderer, Compiler)], functools.partial(NullProgram, device), NullGraph)