import json import pathlib import numpy as np import librosa import soundfile """ The dataset has to be downloaded manually from https://www.openslr.org/12/ and put in `extra/datasets/librispeech`. For mlperf validation the dev-clean dataset is used. Then all the flacs have to be converted to wav using something like: ```fish for file in $(find * | grep flac); do ffmpeg -i $file -ar 16k "$(dirname $file)/$(basename $file .flac).wav"; done ``` Then this [file](https://github.com/mlcommons/inference/blob/master/speech_recognition/rnnt/dev-clean-wav.json) has to also be put in `extra/datasets/librispeech`. """ BASEDIR = pathlib.Path(__file__).parent / "librispeech" with open(BASEDIR / "dev-clean-wav.json") as f: ci = json.load(f) FILTER_BANK = np.expand_dims(librosa.filters.mel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000), 0) WINDOW = librosa.filters.get_window("hann", 320) def feature_extract(x, x_lens): x_lens = np.ceil((x_lens / 160) / 3).astype(np.int32) # pre-emphasis x = np.concatenate((np.expand_dims(x[:, 0], 1), x[:, 1:] - 0.97 * x[:, :-1]), axis=1) # stft x = librosa.stft(x, n_fft=512, window=WINDOW, hop_length=160, win_length=320, center=True, pad_mode="reflect") x = np.stack((x.real, x.imag), axis=-1) # power spectrum x = (x**2).sum(-1) # mel filter bank x = np.matmul(FILTER_BANK, x) # log x = np.log(x + 1e-20) # feature splice seq = [x] for i in range(1, 3): tmp = np.zeros_like(x) tmp[:, :, :-i] = x[:, :, i:] seq.append(tmp) features = np.concatenate(seq, axis=1)[:, :, ::3] # normalize features_mean = np.zeros((features.shape[0], features.shape[1]), dtype=np.float32) features_std = np.zeros((features.shape[0], features.shape[1]), dtype=np.float32) for i in range(features.shape[0]): features_mean[i, :] = features[i, :, :x_lens[i]].mean(axis=1) features_std[i, :] = features[i, :, :x_lens[i]].std(axis=1, ddof=1) features_std += 1e-5 features = (features - np.expand_dims(features_mean, 2)) / np.expand_dims(features_std, 2) return features.transpose(2, 0, 1), x_lens.astype(np.float32) def load_wav(file): sample = soundfile.read(file)[0].astype(np.float32) return sample, sample.shape[0] def iterate(bs=1, start=0): print(f"there are {len(ci)} samples in the dataset") for i in range(start, len(ci), bs): samples, sample_lens = zip(*[load_wav(BASEDIR / v["files"][0]["fname"]) for v in ci[i : i + bs]]) samples = list(samples) # pad to same length max_len = max(sample_lens) for j in range(len(samples)): samples[j] = np.pad(samples[j], (0, max_len - sample_lens[j]), "constant") samples, sample_lens = np.array(samples), np.array(sample_lens) yield feature_extract(samples, sample_lens), np.array([v["transcript"] for v in ci[i : i + bs]]) if __name__ == "__main__": X, Y = next(iterate()) print(X[0].shape, Y.shape)