#!/usr/bin/env python import unittest import numpy as np import tensorflow as tf import tensorflow_addons as tfa from tensorflow.python.ops import math_ops from extra.lr_scheduler import LRSchedulerGroup from tinygrad.tensor import Tensor from tinygrad.nn.optim import LAMB, LARS, SGD, OptimizerGroup from test.external.mlperf_resnet.lars_optimizer import LARSOptimizer from examples.mlperf.lr_schedulers import PolynomialDecayWithWarmup from test.external.mlperf_resnet.lars_util import PolynomialDecayWithWarmup as PolynomialDecayWithWarmup_tf np.random.seed(1337) x_init = np.random.randn(1,4).astype(np.float32) W_init = np.random.randn(4,4).astype(np.float32) m_init = np.random.randn(1,4).astype(np.float32) class TinyNet: def __init__(self): self.x = Tensor(x_init.copy(), requires_grad=True) self.W = Tensor(W_init.copy(), requires_grad=True) self.m = Tensor(m_init.copy()) def forward(self): out = self.x.matmul(self.W).relu() out = out.log_softmax(1) out = out.mul(self.m).add(self.m).sum() return out class TinyNetTF: def __init__(self): self.x = tf.Variable(x_init.copy(), trainable=True, name="x") self.W = tf.Variable(W_init.copy(), trainable=True, name="W") self.m = tf.constant(m_init.copy()) def forward(self): out = tf.matmul(self.x, self.W) out = tf.nn.relu(out) out = tf.nn.log_softmax(out, axis=1) out = tf.multiply(out, self.m) + self.m out = tf.reduce_sum(out) return out def step(optim, steps=1, kwargs={}, scheduler=None, schedopts=None, do_optim=True): net = TinyNet() optim = optim([net.x, net.W], **kwargs) if scheduler is not None: scheduler = scheduler(optim, **schedopts) lrs = [] for _ in range(steps): if do_optim: out = net.forward() optim.zero_grad() out.backward() lrs.append(optim.lr.item() if not isinstance(optim, OptimizerGroup) else optim.optimizers[0].lr.item()) if do_optim: optim.step() if scheduler is not None: scheduler.step() return lrs, net.x.detach().numpy(), net.W.detach().numpy() def step_tf(optim, steps=1, kwargs={}, scheduler=None, schedopts=None, do_optim=True): net = TinyNetTF() if scheduler is not None: kwargs['lr'] = scheduler(**schedopts) optim = optim(**kwargs) lrs = [] for _ in range(steps): if do_optim: with tf.GradientTape() as tape: out = net.forward() lr_t = optim.learning_rate # refer to test/external/mlperf_resnet/lars_optimizer.py:_prepare_local if callable(lr_t): lr_t = lr_t(math_ops.cast(optim.iterations, tf.float32)) lrs.append(lr_t) if do_optim: grads = tape.gradient(out, [net.x, net.W]) optim.apply_gradients(zip(grads, [net.x, net.W])) # optim calls scheduler in tf else: optim._iterations.assign_add(1) return lrs, net.x.numpy(), net.W.numpy() # skip list is skipping W def create_tiny_lars(params, lr, skip_list=False): if skip_list: return OptimizerGroup(LARS([params[0]], lr), SGD([params[1]], lr, classic=True, weight_decay=0., momentum=.9)) return LARS(params, lr) def create_tf_lars(lr, skip_list=False): return LARSOptimizer(lr, skip_list=["W"] if skip_list else None) def create_tiny_polylr(optim, initial_lr, end_lr, train_steps, warmup, power=2, skip_list=False): assert power == 2 if skip_list: return LRSchedulerGroup( PolynomialDecayWithWarmup(optim[0], initial_lr, end_lr, train_steps, warmup, power), PolynomialDecayWithWarmup(optim[1], initial_lr, end_lr, train_steps, warmup, power)) return PolynomialDecayWithWarmup(optim, initial_lr, end_lr, train_steps, warmup, power) def create_tf_polylr(initial_lr, end_lr, train_steps, warmup, power=2, skip_list=False): assert power == 2 return PolynomialDecayWithWarmup_tf(1, 1, train_steps, initial_learning_rate=initial_lr, end_learning_rate=end_lr, warmup_epochs=warmup) class ExternalTestOptim(unittest.TestCase): def setUp(self): self.old_training = Tensor.training Tensor.training = True def tearDown(self): Tensor.training = self.old_training def _test_optim(self, tinygrad_optim, tensorflow_optim, steps, opts, atol, rtol, tiny_sched=None, tf_sched=None, schedopts=None, do_optim=True): for x,y in zip(step(tinygrad_optim, steps=steps, kwargs=opts, scheduler=tiny_sched, schedopts=schedopts, do_optim=do_optim), step_tf(tensorflow_optim, steps=steps, kwargs=opts, scheduler=tf_sched, schedopts=schedopts, do_optim=do_optim)): np.testing.assert_allclose(x, y, atol=atol, rtol=rtol) def _test_lamb(self, steps, opts, atol, rtol): self._test_optim(LAMB, tfa.optimizers.LAMB, steps, opts, atol, rtol) def _test_lars(self, steps, opts, atol, rtol): self._test_optim(create_tiny_lars, create_tf_lars, steps, opts, atol, rtol) def _test_lars_polylr(self, steps, opts, schedopts, atol, rtol, do_optim=True): self._test_optim(create_tiny_lars, create_tf_lars, steps, opts, atol, rtol, tiny_sched=create_tiny_polylr, tf_sched=create_tf_polylr, schedopts=schedopts, do_optim=do_optim) def test_lamb(self): self._test_lamb(1, {'lr': 0.001}, 1e-5, 0) def test_lamb_high_lr(self): self._test_lamb(1, {'lr': 10}, 1e-5, 1e-5) def test_multistep_lamb(self): self._test_lamb(10, {'lr': 0.001}, 1e-5, 0) def test_multistep_lamb_high_lr(self): self._test_lamb(10, {'lr': 10}, 1e-5, 3e-4) def test_lars(self): self._test_lars(1, {'lr': 0.01}, 1e-5, 0) def test_lars_high_lr(self): self._test_lars(1, {'lr': 10}, 1e-5, 1e-5) def test_multistep_lars(self): self._test_lars(10, {'lr': 0.001}, 1e-5, 0) def test_multistep_lars_high_lr(self): self._test_lars(10, {'lr': 10}, 1e-5, 3e-4) def test_lars_skip(self): self._test_lars(10, {'lr': 10, 'skip_list': True}, 1e-5, 3e-4) def test_lars_skip_high_lr(self): self._test_lars(1, {'lr': 10, 'skip_list': True}, 1e-5, 1e-5) def test_lars_skip_multistep(self): self._test_lars(10, {'lr': 0.001, 'skip_list': True}, 1e-5, 0) def test_lars_skip_multistep_high_lr(self): self._test_lars(10, {'lr': 10, 'skip_list': True}, 1e-5, 3e-4) def test_lars_polylr(self): self._test_lars_polylr(10, {'lr': 1.0}, { 'initial_lr': 1.0, 'end_lr': 1e-4, 'train_steps': 10, 'warmup': 3 }, 1e-5, 1e-5) def test_lars_polylr_large(self): self._test_lars_polylr(100, {'lr': 10.0}, { 'initial_lr': 10.0, 'end_lr': 1e-5, 'train_steps': 100, 'warmup': 43 }, 1e-5, 1e-5, do_optim=False) def test_lars_polylr_skip(self): self._test_lars_polylr(10, {'lr': 1.0, 'skip_list': True}, { 'initial_lr': 1.0, 'end_lr': 1e-4, 'train_steps': 10, 'warmup': 3, 'skip_list': True }, 1e-5, 1e-5) @unittest.skip("slow, but you can run this locally to check") def test_lars_polylr_resnet(self): train_files = 1_281_167 BS = 624 steps_per_epoch = train_files // BS epochs = 45 warmup_epochs = 5 self._test_lars_polylr(steps_per_epoch * epochs, {'lr': 10.4}, { 'initial_lr': 10.4, 'end_lr': 1e-4, # step counts for BS=624 EPOCHS=45 resnet 'train_steps': steps_per_epoch * epochs, 'warmup': steps_per_epoch * warmup_epochs, }, 1e-5, 1e-5, do_optim=False) if __name__ == '__main__': unittest.main()