# sorted in order of increasing complexity import itertools from tinygrad.helpers import dedup, flatten, getenv, unwrap, FUSE_OPTIM from tinygrad.tensor import Tensor from tinygrad.dtype import dtypes, least_upper_dtype class Optimizer: """ Base class for all optimizers. """ def __init__(self, params: list[Tensor], lr: float, fused=FUSE_OPTIM): # if it's None, but being put into an optimizer, set it to True for x in params: if x.requires_grad is None: x.requires_grad = True self.params: list[Tensor] = dedup([x for x in params if x.requires_grad]) assert len(self.params) != 0, "optimizer must have at least one param" self.device = self.params[0].device self.buffers: list[Tensor] = dedup([x for x in params if not x.requires_grad]) # buffers are still realized self.fused = fused # store lr in at least float32 precision self.lr = Tensor(lr if getenv("CONST_LR") else [lr], requires_grad=False, device=self.device, dtype=least_upper_dtype(dtypes.default_float, dtypes.float32)) if self.fused: self.pos_params = list(itertools.accumulate(self.params, lambda x,y: x+y.flatten().shape[0], initial=0)) def _new_optim_param(self) -> list[Tensor]: if self.fused: return [Tensor.zeros(self.pos_params[-1], dtype=dtypes.float32, device=self.device, requires_grad=False).contiguous()] return [Tensor.zeros(*t.shape, dtype=dtypes.float32, device=t.device, requires_grad=False).contiguous() for t in self.params] def zero_grad(self): """ Zeroes the gradients of all the parameters. """ for param in self.params: param.grad = None def step(self): """ Performs a single optimization step. """ Tensor.realize(*self.schedule_step()) def schedule_step(self) -> list[Tensor]: """ Returns the tensors that need to be realized to perform a single optimization step. """ if not Tensor.training: raise RuntimeError( f"""Tensor.training={Tensor.training}, Tensor.training must be enabled to use the optimizer. - help: Consider setting Tensor.training=True before calling Optimizer.step().""") if self.fused: # optimizer fusion just concatentates all the buffers, runs the _step, then splits them back up out, extra = self._step([Tensor.cat(*[t.flatten() for t in self.params], dim=0)], [Tensor.cat(*[unwrap(t.grad).flatten() for t in self.params], dim=0)]) updated_params = [out[0][self.pos_params[i]:self.pos_params[i+1]].reshape(tt.shape) for i, tt in enumerate(self.params)] else: updated_params, extra = self._step(self.params, [unwrap(t.grad) for t in self.params]) for i, tt in enumerate(self.params): tt.assign(updated_params[i]) return extra+self.params+self.buffers def _step(self, params:list[Tensor], grads:list[Tensor]) -> tuple[list[Tensor], list[Tensor]]: raise NotImplementedError class OptimizerGroup(Optimizer): """ Combines multiple optimizers into one. """ def __init__(self, *optimizers: Optimizer): # pylint: disable=super-init-not-called self.optimizers = optimizers self.params, self.buffers = flatten([o.params for o in self.optimizers]), flatten([o.buffers for o in self.optimizers]) def __getitem__(self, i): return self.optimizers[i] def zero_grad(self): [o.zero_grad() for o in self.optimizers] def schedule_step(self) -> list[Tensor]: return [x for o in self.optimizers for x in o.schedule_step()] # LARS is essentially just trust ratio to SGD so if we just set the trust coeff 0.0 it's just standard SGD. def SGD(params: list[Tensor], lr=0.001, momentum=0.0, weight_decay=0.0, nesterov=False, classic=False, fused=FUSE_OPTIM): """ Stochastic Gradient Descent (SGD) optimizer with optional momentum and weight decay. `classic` is a boolean flag that determines whether to use the popular momentum update rule or the classic momentum update rule. - Described: https://paperswithcode.com/method/sgd """ return LARS(params, lr, momentum, weight_decay, nesterov, classic, tcoef=0.0, fused=fused) class LARS(Optimizer): """ Layer-wise Adaptive Rate Scaling (LARS) optimizer with optional momentum and weight decay. - Described: https://paperswithcode.com/method/lars - Paper: https://arxiv.org/abs/1708.03888v3 """ def __init__(self, params:list[Tensor], lr=0.001, momentum=0.9, weight_decay=1e-4, nesterov=False, classic=True, tcoef=0.001, fused=FUSE_OPTIM): super().__init__(params, lr, fused) self.momentum, self.wd, self.nesterov, self.classic, self.tcoef = momentum, weight_decay, nesterov, classic, tcoef self.b = self._new_optim_param() if self.momentum else [] def _step(self, params:list[Tensor], grads:list[Tensor]) -> tuple[list[Tensor], list[Tensor]]: ret = [] for i, (t, g) in enumerate(zip(params, grads)): if self.tcoef != 0: r1 = t.detach().square().sum().sqrt() r2 = g.square().sum().sqrt() r:Tensor|float = (r1 > 0).where((r2 > 0).where(self.tcoef * r1 / (r2 + self.wd * r1), 1.0), 1.0) else: r = 1.0 g = g + self.wd * t.detach() # classic momentum does post learning rate update if self.classic: g = g * r * self.lr if self.momentum: # TODO: this contiguous is required for correctness because self.b[i] becomes a non contiguous view # the scheduler should detect this and just insert contiguous self.b[i].assign(self.momentum * self.b[i].contiguous() + g) # NOTE: self.b[i] is zero on the first run, no if required g = (g + self.momentum * self.b[i]) if self.nesterov else self.b[i] # popular momentum does pre learning rate update if not self.classic: g = g * r * self.lr ret.append((t.detach() - g).cast(t.dtype)) return ret, self.b # LAMB is essentially just the trust ratio part of LARS applied to Adam/W so if we just set the trust ratio to 1.0 it's just Adam/W. def AdamW(params: list[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8, weight_decay=0.01, fused=FUSE_OPTIM): """ AdamW optimizer with optional weight decay. - Described: https://paperswithcode.com/method/adamw - Paper: https://arxiv.org/abs/1711.05101v3 """ return LAMB(params, lr, b1, b2, eps, weight_decay, adam=True, fused=fused) def Adam(params: list[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8, fused=FUSE_OPTIM): """ Adam optimizer. - Described: https://paperswithcode.com/method/adam - Paper: https://arxiv.org/abs/1412.6980 """ return LAMB(params, lr, b1, b2, eps, 0.0, adam=True, fused=fused) class LAMB(Optimizer): """ LAMB optimizer with optional weight decay. - Described: https://paperswithcode.com/method/lamb - Paper: https://arxiv.org/abs/1904.00962 """ def __init__(self, params: list[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-6, weight_decay=0.0, adam=False, fused=FUSE_OPTIM): super().__init__(params, lr, fused) self.b1, self.b2, self.eps, self.wd, self.adam = b1, b2, eps, weight_decay, adam self.b1_t, self.b2_t = (Tensor.ones((1,), dtype=dtypes.float32, device=self.device, requires_grad=False).contiguous() for _ in [b1, b2]) self.m = self._new_optim_param() self.v = self._new_optim_param() def _step(self, params:list[Tensor], grads:list[Tensor]) -> tuple[list[Tensor], list[Tensor]]: ret = [] self.b1_t *= self.b1 self.b2_t *= self.b2 for i, (t, g) in enumerate(zip(params, grads)): self.m[i].assign(self.b1 * self.m[i] + (1.0 - self.b1) * g) self.v[i].assign(self.b2 * self.v[i] + (1.0 - self.b2) * (g * g)) m_hat = self.m[i] / (1.0 - self.b1_t) v_hat = self.v[i] / (1.0 - self.b2_t) up = (m_hat / (v_hat.sqrt() + self.eps)) + self.wd * t.detach() if not self.adam: r1 = t.detach().square().sum().sqrt() r2 = up.square().sum().sqrt() r: Tensor|float = Tensor.where(r1 > 0, Tensor.where(r2 > 0, r1 / r2, 1.0), 1.0) else: r = 1.0 ret.append((t.detach() - self.lr * r * up).cast(t.dtype)) return ret, [self.b1_t, self.b2_t] + self.m + self.v