#!/usr/bin/env python3 import numpy as np from . import gnss_model from .kalman_helpers import ObservationKind from .ekf_sym import EKF_sym from selfdrive.locationd.kalman.loc_kf import parse_pr, parse_prr class States(): ECEF_POS = slice(0,3) # x, y and z in ECEF in meters ECEF_VELOCITY = slice(3,6) CLOCK_BIAS = slice(6, 7) # clock bias in light-meters, CLOCK_DRIFT = slice(7, 8) # clock drift in light-meters/s, CLOCK_ACCELERATION = slice(8, 9) # clock acceleration in light-meters/s**2 GLONASS_BIAS = slice(9, 10) # clock drift in light-meters/s, GLONASS_FREQ_SLOPE = slice(10, 11) # GLONASS bias in m expressed as bias + freq_num*freq_slope class GNSSKalman(): def __init__(self, N=0, max_tracks=3000): x_initial = np.array([-2712700.6008, -4281600.6679, 3859300.1830, 0, 0, 0, 0, 0, 0, 0, 0]) # state covariance P_initial = np.diag([10000**2, 10000**2, 10000**2, 10**2, 10**2, 10**2, (2000000)**2, (100)**2, (0.5)**2, (10)**2, (1)**2]) # process noise Q = np.diag([0.3**2, 0.3**2, 0.3**2, 3**2, 3**2, 3**2, (.1)**2, (0)**2, (0.01)**2, .1**2, (.01)**2]) self.dim_state = x_initial.shape[0] # mahalanobis outlier rejection maha_test_kinds = []#ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS] name = 'gnss' gnss_model.gen_model(name, self.dim_state, maha_test_kinds) # init filter self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_state, self.dim_state, maha_test_kinds=maha_test_kinds) @property def x(self): return self.filter.state() @property def P(self): return self.filter.covs() def predict(self, t): return self.filter.predict(t) def rts_smooth(self, estimates): return self.filter.rts_smooth(estimates, norm_quats=False) def init_state(self, state, covs_diag=None, covs=None, filter_time=None): if covs_diag is not None: P = np.diag(covs_diag) elif covs is not None: P = covs else: P = self.filter.covs() self.filter.init_state(state, P, filter_time) def predict_and_observe(self, t, kind, data): if len(data) > 0: data = np.atleast_2d(data) if kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS: r = self.predict_and_update_pseudorange(data, t, kind) elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS: r = self.predict_and_update_pseudorange_rate(data, t, kind) return r def predict_and_update_pseudorange(self, meas, t, kind): R = np.zeros((len(meas), 1, 1)) sat_pos_freq = np.zeros((len(meas), 4)) z = np.zeros((len(meas), 1)) for i, m in enumerate(meas): z_i, R_i, sat_pos_freq_i = parse_pr(m) sat_pos_freq[i,:] = sat_pos_freq_i z[i,:] = z_i R[i,:,:] = R_i return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq) def predict_and_update_pseudorange_rate(self, meas, t, kind): R = np.zeros((len(meas), 1, 1)) z = np.zeros((len(meas), 1)) sat_pos_vel = np.zeros((len(meas), 6)) for i, m in enumerate(meas): z_i, R_i, sat_pos_vel_i = parse_prr(m) sat_pos_vel[i] = sat_pos_vel_i R[i,:,:] = R_i z[i, :] = z_i return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel) if __name__ == "__main__": GNSSKalman()