#!/usr/bin/env python3 import numpy as np from selfdrive.locationd.kalman import loc_local_model from selfdrive.locationd.kalman.kalman_helpers import ObservationKind from selfdrive.locationd.kalman.ekf_sym import EKF_sym class States(): VELOCITY = slice(0,3) # device frame velocity in m/s ANGULAR_VELOCITY = slice(3, 6) # roll, pitch and yaw rates in device frame in radians/s GYRO_BIAS = slice(6, 9) # roll, pitch and yaw biases ODO_SCALE = slice(9, 10) # odometer scale ACCELERATION = slice(10, 13) # Acceleration in device frame in m/s**2 class LocLocalKalman(): def __init__(self): x_initial = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]) # state covariance P_initial = np.diag([10**2, 10**2, 10**2, 1**2, 1**2, 1**2, 0.05**2, 0.05**2, 0.05**2, 0.02**2, 1**2, 1**2, 1**2]) # process noise Q = np.diag([0.0**2, 0.0**2, 0.0**2, .01**2, .01**2, .01**2, (0.005/100)**2, (0.005/100)**2, (0.005/100)**2, (0.02/100)**2, 3**2, 3**2, 3**2]) self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2), ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2])} # MSCKF stuff self.dim_state = len(x_initial) self.dim_main = self.dim_state name = 'loc_local' loc_local_model.gen_model(name, self.dim_state) # init filter self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_main, self.dim_main) @property def x(self): return self.filter.state() @property def t(self): return self.filter.filter_time @property def P(self): return self.filter.covs() def predict(self, t): if self.t: # Does NOT modify filter state return self.filter._predict(self.x, self.P, t - self.t)[0] else: raise RuntimeError("Request predict on filter with uninitialized time") def rts_smooth(self, estimates): return self.filter.rts_smooth(estimates, norm_quats=True) def init_state(self, state, covs_diag=None, covs=None, filter_time=None): if covs_diag is not None: P = np.diag(covs_diag) elif covs is not None: P = covs else: P = self.filter.covs() self.filter.init_state(state, P, filter_time) def predict_and_observe(self, t, kind, data): if len(data) > 0: data = np.atleast_2d(data) if kind == ObservationKind.CAMERA_ODO_TRANSLATION: r = self.predict_and_update_odo_trans(data, t, kind) elif kind == ObservationKind.CAMERA_ODO_ROTATION: r = self.predict_and_update_odo_rot(data, t, kind) elif kind == ObservationKind.ODOMETRIC_SPEED: r = self.predict_and_update_odo_speed(data, t, kind) else: r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data))) return r def get_R(self, kind, n): obs_noise = self.obs_noise[kind] dim = obs_noise.shape[0] R = np.zeros((n, dim, dim)) for i in range(n): R[i,:,:] = obs_noise return R def predict_and_update_odo_speed(self, speed, t, kind): z = np.array(speed) R = np.zeros((len(speed), 1, 1)) for i, _ in enumerate(z): R[i,:,:] = np.diag([0.2**2]) return self.filter.predict_and_update_batch(t, kind, z, R) def predict_and_update_odo_trans(self, trans, t, kind): z = trans[:,:3] R = np.zeros((len(trans), 3, 3)) for i, _ in enumerate(z): R[i,:,:] = np.diag(trans[i,3:]**2) return self.filter.predict_and_update_batch(t, kind, z, R) def predict_and_update_odo_rot(self, rot, t, kind): z = rot[:,:3] R = np.zeros((len(rot), 3, 3)) for i, _ in enumerate(z): R[i,:,:] = np.diag(rot[i,3:]**2) return self.filter.predict_and_update_batch(t, kind, z, R) if __name__ == "__main__": LocLocalKalman()