#!/usr/bin/env python3 import os import zmq import math import json import numpy as np from bisect import bisect_right from cereal import car from common.params import Params from common.numpy_fast import clip import cereal.messaging as messaging from selfdrive.swaglog import cloudlog from selfdrive.controls.lib.vehicle_model import VehicleModel from cereal.services import service_list from selfdrive.locationd.kalman.loc_local_kf import LocLocalKalman from selfdrive.locationd.kalman.kalman_helpers import ObservationKind from selfdrive.locationd.params_learner import ParamsLearner DEBUG = False kf = LocLocalKalman() # Make sure that model is generated on import time LEARNING_RATE = 3 class Localizer(): def __init__(self, disabled_logs=None, dog=None): self.kf = LocLocalKalman() self.reset_kalman() self.sensor_data_t = 0.0 self.max_age = .2 # seconds self.calibration_valid = False if disabled_logs is None: self.disabled_logs = list() else: self.disabled_logs = disabled_logs def reset_kalman(self): self.filter_time = None self.observation_buffer = [] self.converter = None self.speed_counter = 0 self.sensor_counter = 0 def liveLocationMsg(self, time): fix = messaging.log.KalmanOdometry.new_message() predicted_state = self.kf.x fix.trans = [float(predicted_state[0]), float(predicted_state[1]), float(predicted_state[2])] fix.rot = [float(predicted_state[3]), float(predicted_state[4]), float(predicted_state[5])] return fix def update_kalman(self, time, kind, meas): idx = bisect_right([x[0] for x in self.observation_buffer], time) self.observation_buffer.insert(idx, (time, kind, meas)) while self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age: self.kf.predict_and_observe(*self.observation_buffer.pop(0)) def handle_cam_odo(self, log, current_time): self.update_kalman(current_time, ObservationKind.CAMERA_ODO_ROTATION, np.concatenate([log.cameraOdometry.rot, log.cameraOdometry.rotStd])) self.update_kalman(current_time, ObservationKind.CAMERA_ODO_TRANSLATION, np.concatenate([log.cameraOdometry.trans, log.cameraOdometry.transStd])) def handle_controls_state(self, log, current_time): self.speed_counter += 1 if self.speed_counter % 5 == 0: self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, np.array([log.controlsState.vEgo])) def handle_sensors(self, log, current_time): for sensor_reading in log.sensorEvents: # TODO does not yet account for double sensor readings in the log if sensor_reading.type == 4: self.sensor_counter += 1 if self.sensor_counter % LEARNING_RATE == 0: self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-sensor_reading.gyro.v[2], -sensor_reading.gyro.v[1], -sensor_reading.gyro.v[0]]) def handle_log(self, log): current_time = 1e-9 * log.logMonoTime typ = log.which if typ in self.disabled_logs: return if typ == "sensorEvents": self.sensor_data_t = current_time self.handle_sensors(log, current_time) elif typ == "controlsState": self.handle_controls_state(log, current_time) elif typ == "cameraOdometry": self.handle_cam_odo(log, current_time) def locationd_thread(gctx, addr, disabled_logs): poller = zmq.Poller() controls_state_socket = messaging.sub_sock('controlsState', poller, addr=addr, conflate=True) sensor_events_socket = messaging.sub_sock('sensorEvents', poller, addr=addr, conflate=True) camera_odometry_socket = messaging.sub_sock('cameraOdometry', poller, addr=addr, conflate=True) kalman_odometry_socket = messaging.pub_sock('kalmanOdometry') live_parameters_socket = messaging.pub_sock('liveParameters') params_reader = Params() cloudlog.info("Parameter learner is waiting for CarParams") CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) VM = VehicleModel(CP) cloudlog.info("Parameter learner got CarParams: %s" % CP.carFingerprint) params = params_reader.get("LiveParameters") # Check if car model matches if params is not None: params = json.loads(params) if (params.get('carFingerprint', None) != CP.carFingerprint) or (params.get('carVin', CP.carVin) != CP.carVin): cloudlog.info("Parameter learner found parameters for wrong car.") params = None if params is None: params = { 'carFingerprint': CP.carFingerprint, 'carVin': CP.carVin, 'angleOffsetAverage': 0.0, 'stiffnessFactor': 1.0, 'steerRatio': VM.sR, } params_reader.put("LiveParameters", json.dumps(params)) cloudlog.info("Parameter learner resetting to default values") cloudlog.info("Parameter starting with: %s" % str(params)) localizer = Localizer(disabled_logs=disabled_logs) learner = ParamsLearner(VM, angle_offset=params['angleOffsetAverage'], stiffness_factor=params['stiffnessFactor'], steer_ratio=params['steerRatio'], learning_rate=LEARNING_RATE) i = 1 while True: for socket, event in poller.poll(timeout=1000): log = messaging.recv_one(socket) localizer.handle_log(log) if socket is controls_state_socket: if not localizer.kf.t: continue if i % LEARNING_RATE == 0: # controlsState is not updating the Kalman Filter, so update KF manually localizer.kf.predict(1e-9 * log.logMonoTime) predicted_state = localizer.kf.x yaw_rate = -float(predicted_state[5]) steering_angle = math.radians(log.controlsState.angleSteers) params_valid = learner.update(yaw_rate, log.controlsState.vEgo, steering_angle) log_t = 1e-9 * log.logMonoTime sensor_data_age = log_t - localizer.sensor_data_t params = messaging.new_message() params.init('liveParameters') params.liveParameters.valid = bool(params_valid) params.liveParameters.sensorValid = bool(sensor_data_age < 5.0) params.liveParameters.angleOffset = float(math.degrees(learner.ao)) params.liveParameters.angleOffsetAverage = float(math.degrees(learner.slow_ao)) params.liveParameters.stiffnessFactor = float(learner.x) params.liveParameters.steerRatio = float(learner.sR) live_parameters_socket.send(params.to_bytes()) if i % 6000 == 0: # once a minute params = learner.get_values() params['carFingerprint'] = CP.carFingerprint params['carVin'] = CP.carVin params_reader.put("LiveParameters", json.dumps(params)) params_reader.put("ControlsParams", json.dumps({'angle_model_bias': log.controlsState.angleModelBias})) i += 1 elif socket is camera_odometry_socket: msg = messaging.new_message() msg.init('kalmanOdometry') msg.logMonoTime = log.logMonoTime msg.kalmanOdometry = localizer.liveLocationMsg(log.logMonoTime * 1e-9) kalman_odometry_socket.send(msg.to_bytes()) elif socket is sensor_events_socket: pass def main(gctx=None, addr="127.0.0.1"): IN_CAR = os.getenv("IN_CAR", False) disabled_logs = os.getenv("DISABLED_LOGS", "").split(",") # No speed for now disabled_logs.append('controlsState') if IN_CAR: addr = "192.168.5.11" locationd_thread(gctx, addr, disabled_logs) if __name__ == "__main__": main()