import math import numpy as np from cereal import log from opendbc.car.interfaces import LatControlInputs from opendbc.car.vehicle_model import ACCELERATION_DUE_TO_GRAVITY from openpilot.selfdrive.controls.lib.latcontrol import LatControl from openpilot.common.pid import PIDController # At higher speeds (25+mph) we can assume: # Lateral acceleration achieved by a specific car correlates to # torque applied to the steering rack. It does not correlate to # wheel slip, or to speed. # This controller applies torque to achieve desired lateral # accelerations. To compensate for the low speed effects we # use a LOW_SPEED_FACTOR in the error. Additionally, there is # friction in the steering wheel that needs to be overcome to # move it at all, this is compensated for too. LOW_SPEED_X = [0, 10, 20, 30] LOW_SPEED_Y = [15, 13, 10, 5] class LatControlTorque(LatControl): def __init__(self, CP, CI): super().__init__(CP, CI) self.torque_params = CP.lateralTuning.torque.as_builder() self.pid = PIDController(self.torque_params.kp, self.torque_params.ki, k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max) self.torque_from_lateral_accel = CI.torque_from_lateral_accel() self.use_steering_angle = self.torque_params.useSteeringAngle self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction): self.torque_params.latAccelFactor = latAccelFactor self.torque_params.latAccelOffset = latAccelOffset self.torque_params.friction = friction def update(self, active, CS, VM, params, steer_limited_by_controls, desired_curvature, calibrated_pose, curvature_limited): pid_log = log.ControlsState.LateralTorqueState.new_message() if not active: output_torque = 0.0 pid_log.active = False else: actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY if self.use_steering_angle: actual_curvature = actual_curvature_vm curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0)) else: assert calibrated_pose is not None actual_curvature_pose = calibrated_pose.angular_velocity.yaw / CS.vEgo actual_curvature = np.interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_pose]) curvature_deadzone = 0.0 desired_lateral_accel = desired_curvature * CS.vEgo ** 2 # desired rate is the desired rate of change in the setpoint, not the absolute desired curvature # desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2 actual_lateral_accel = actual_curvature * CS.vEgo ** 2 lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2 low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2 setpoint = desired_lateral_accel + low_speed_factor * desired_curvature measurement = actual_lateral_accel + low_speed_factor * actual_curvature gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation torque_from_setpoint = self.torque_from_lateral_accel(LatControlInputs(setpoint, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params, setpoint, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False) torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params, measurement, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False) pid_log.error = float(torque_from_setpoint - torque_from_measurement) ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params, desired_lateral_accel - actual_lateral_accel, lateral_accel_deadzone, friction_compensation=True, gravity_adjusted=True) freeze_integrator = steer_limited_by_controls or CS.steeringPressed or CS.vEgo < 5 output_torque = self.pid.update(pid_log.error, feedforward=ff, speed=CS.vEgo, freeze_integrator=freeze_integrator) pid_log.active = True pid_log.p = float(self.pid.p) pid_log.i = float(self.pid.i) pid_log.d = float(self.pid.d) pid_log.f = float(self.pid.f) pid_log.output = float(-output_torque) pid_log.actualLateralAccel = float(actual_lateral_accel) pid_log.desiredLateralAccel = float(desired_lateral_accel) pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_controls, curvature_limited)) # TODO left is positive in this convention return -output_torque, 0.0, pid_log