#include "opendbc/safety/safety_declarations.h" // ISO 11270 static const float ISO_LATERAL_ACCEL = 3.0; // m/s^2 static const float EARTH_G = 9.81; static const float AVERAGE_ROAD_ROLL = 0.06; // ~3.4 degrees, 6% superelevation // check that commanded torque value isn't too far from measured static bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) { // *** val rate limit check *** int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP; int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP; // if we've exceeded the meas val, we must start moving toward 0 int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR)); int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR)); // check for violation return max_limit_check(val, highest_allowed, lowest_allowed); } // check that commanded value isn't fighting against driver static bool driver_limit_check(int val, int val_last, const struct sample_t *val_driver, const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ALLOWANCE, const int DRIVER_FACTOR) { // torque delta/rate limits int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP; int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP; // driver int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR; int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR; // if we've exceeded the applied torque, we must start moving toward 0 int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(driver_max_limit, 0))); int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(driver_min_limit, 0))); // check for violation return max_limit_check(val, highest_allowed, lowest_allowed); } // real time check, mainly used for steer torque rate limiter static bool rt_torque_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) { // *** torque real time rate limit check *** int highest_val = MAX(val_last, 0) + MAX_RT_DELTA; int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA; // check for violation return max_limit_check(val, highest_val, lowest_val); } // Safety checks for torque-based steering commands bool steer_torque_cmd_checks(int desired_torque, int steer_req, const TorqueSteeringLimits limits) { bool violation = false; uint32_t ts = microsecond_timer_get(); if (controls_allowed) { // Some safety models support variable torque limit based on vehicle speed int max_torque = limits.max_torque; if (limits.dynamic_max_torque) { const float fudged_speed = (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.; max_torque = interpolate(limits.max_torque_lookup, fudged_speed) + 1; max_torque = CLAMP(max_torque, -limits.max_torque, limits.max_torque); } // *** global torque limit check *** violation |= max_limit_check(desired_torque, max_torque, -max_torque); // *** torque rate limit check *** if (limits.type == TorqueDriverLimited) { violation |= driver_limit_check(desired_torque, desired_torque_last, &torque_driver, max_torque, limits.max_rate_up, limits.max_rate_down, limits.driver_torque_allowance, limits.driver_torque_multiplier); } else { violation |= dist_to_meas_check(desired_torque, desired_torque_last, &torque_meas, limits.max_rate_up, limits.max_rate_down, limits.max_torque_error); } desired_torque_last = desired_torque; // *** torque real time rate limit check *** violation |= rt_torque_rate_limit_check(desired_torque, rt_torque_last, limits.max_rt_delta); // every RT_INTERVAL set the new limits uint32_t ts_elapsed = get_ts_elapsed(ts, ts_torque_check_last); if (ts_elapsed > MAX_RT_INTERVAL) { rt_torque_last = desired_torque; ts_torque_check_last = ts; } } // no torque if controls is not allowed if (!controls_allowed && (desired_torque != 0)) { violation = true; } // certain safety modes set their steer request bit low for one or more frame at a // predefined max frequency to avoid steering faults in certain situations bool steer_req_mismatch = (steer_req == 0) && (desired_torque != 0); if (!limits.has_steer_req_tolerance) { if (steer_req_mismatch) { violation = true; } } else { if (steer_req_mismatch) { if (invalid_steer_req_count == 0) { // disallow torque cut if not enough recent matching steer_req messages if (valid_steer_req_count < limits.min_valid_request_frames) { violation = true; } // or we've cut torque too recently in time uint32_t ts_elapsed = get_ts_elapsed(ts, ts_steer_req_mismatch_last); if (ts_elapsed < limits.min_valid_request_rt_interval) { violation = true; } } else { // or we're cutting more frames consecutively than allowed if (invalid_steer_req_count >= limits.max_invalid_request_frames) { violation = true; } } valid_steer_req_count = 0; ts_steer_req_mismatch_last = ts; invalid_steer_req_count = MIN(invalid_steer_req_count + 1, limits.max_invalid_request_frames); } else { valid_steer_req_count = MIN(valid_steer_req_count + 1, limits.min_valid_request_frames); invalid_steer_req_count = 0; } } // reset to 0 if either controls is not allowed or there's a violation if (violation || !controls_allowed) { valid_steer_req_count = 0; invalid_steer_req_count = 0; desired_torque_last = 0; rt_torque_last = 0; ts_torque_check_last = ts; ts_steer_req_mismatch_last = ts; } return violation; } static bool rt_angle_rate_limit_check(AngleSteeringLimits limits) { bool violation = false; uint32_t ts = microsecond_timer_get(); // *** angle real time rate limit check *** int max_rt_msgs = ((float)limits.frequency * MAX_RT_INTERVAL / 1e6 * 1.2) + 1; // 1.2x buffer if ((int)rt_angle_msgs > max_rt_msgs) { violation = true; } rt_angle_msgs += 1U; // every RT_INTERVAL reset message counter uint32_t ts_elapsed = get_ts_elapsed(ts, ts_angle_check_last); if (ts_elapsed >= MAX_RT_INTERVAL) { rt_angle_msgs = 0; ts_angle_check_last = ts; } return violation; } // Safety checks for angle-based steering commands bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const AngleSteeringLimits limits) { bool violation = false; if (controls_allowed && steer_control_enabled) { // convert floating point angle rate limits to integers in the scale of the desired angle on CAN, // add 1 to not false trigger the violation. also fudge the speed by 1 m/s so rate limits are // always slightly above openpilot's in case we read an updated speed in between angle commands // TODO: this speed fudge can be much lower, look at data to determine the lowest reasonable offset const float fudged_speed = (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.; int delta_angle_up = (interpolate(limits.angle_rate_up_lookup, fudged_speed) * limits.angle_deg_to_can) + 1.; int delta_angle_down = (interpolate(limits.angle_rate_down_lookup, fudged_speed) * limits.angle_deg_to_can) + 1.; // allow down limits at zero since small floats from openpilot will be rounded to 0 // TODO: openpilot should be cognizant of this and not send small floats int highest_desired_angle = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up : delta_angle_down); int lowest_desired_angle = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down : delta_angle_up); // check that commanded angle value isn't too far from measured, used to limit torque for some safety modes // ensure we start moving in direction of meas while respecting relaxed rate limits if error is exceeded if (limits.enforce_angle_error && ((vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR) > limits.angle_error_min_speed)) { // flipped fudge to avoid false positives const float fudged_speed_error = (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.; const int delta_angle_up_relaxed = (interpolate(limits.angle_rate_up_lookup, fudged_speed_error) * limits.angle_deg_to_can) - 1.; const int delta_angle_down_relaxed = (interpolate(limits.angle_rate_down_lookup, fudged_speed_error) * limits.angle_deg_to_can) - 1.; // the minimum and maximum angle allowed based on the measured angle const int lowest_desired_angle_error = angle_meas.min - limits.max_angle_error - 1; const int highest_desired_angle_error = angle_meas.max + limits.max_angle_error + 1; // the MAX is to allow the desired angle to hit the edge of the bounds and not require going under it if (desired_angle_last > highest_desired_angle_error) { const int delta = (desired_angle_last >= 0) ? delta_angle_down_relaxed : delta_angle_up_relaxed; highest_desired_angle = MAX(desired_angle_last - delta, highest_desired_angle_error); } else if (desired_angle_last < lowest_desired_angle_error) { const int delta = (desired_angle_last <= 0) ? delta_angle_down_relaxed : delta_angle_up_relaxed; lowest_desired_angle = MIN(desired_angle_last + delta, lowest_desired_angle_error); } else { // already inside error boundary, don't allow commanding outside it highest_desired_angle = MIN(highest_desired_angle, highest_desired_angle_error); lowest_desired_angle = MAX(lowest_desired_angle, lowest_desired_angle_error); } // don't enforce above the max steer // TODO: this should always be done lowest_desired_angle = CLAMP(lowest_desired_angle, -limits.max_angle, limits.max_angle); highest_desired_angle = CLAMP(highest_desired_angle, -limits.max_angle, limits.max_angle); } // check not above ISO 11270 lateral accel assuming worst case road roll if (limits.angle_is_curvature) { // Limit to average banked road since safety doesn't have the roll static const float MAX_LATERAL_ACCEL = ISO_LATERAL_ACCEL - (EARTH_G * AVERAGE_ROAD_ROLL); // ~2.4 m/s^2 // Allow small tolerance by using minimum speed and rounding curvature up const float speed_lower = MAX(vehicle_speed.min / VEHICLE_SPEED_FACTOR, 1.0); const float speed_upper = MAX(vehicle_speed.max / VEHICLE_SPEED_FACTOR, 1.0); const int max_curvature_upper = (MAX_LATERAL_ACCEL / (speed_lower * speed_lower) * limits.angle_deg_to_can) + 1.; const int max_curvature_lower = (MAX_LATERAL_ACCEL / (speed_upper * speed_upper) * limits.angle_deg_to_can) - 1.; // ensure that the curvature error doesn't try to enforce above this limit if (desired_angle_last > 0) { lowest_desired_angle = CLAMP(lowest_desired_angle, -max_curvature_lower, max_curvature_lower); highest_desired_angle = CLAMP(highest_desired_angle, -max_curvature_upper, max_curvature_upper); } else { lowest_desired_angle = CLAMP(lowest_desired_angle, -max_curvature_upper, max_curvature_upper); highest_desired_angle = CLAMP(highest_desired_angle, -max_curvature_lower, max_curvature_lower); } } // check for violation; violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle); } desired_angle_last = desired_angle; // Angle should either be 0 or same as current angle while not steering if (!steer_control_enabled) { if (limits.inactive_angle_is_zero) { violation |= desired_angle != 0; } else { const int max_inactive_angle = CLAMP(angle_meas.max, -limits.max_angle, limits.max_angle) + 1; const int min_inactive_angle = CLAMP(angle_meas.min, -limits.max_angle, limits.max_angle) - 1; violation |= max_limit_check(desired_angle, max_inactive_angle, min_inactive_angle); } } // No angle control allowed when controls are not allowed if (!controls_allowed) { violation |= steer_control_enabled; } // reset to current angle if either controls is not allowed or there's a violation if (violation || !controls_allowed) { if (limits.inactive_angle_is_zero) { desired_angle_last = 0; } else { desired_angle_last = CLAMP(angle_meas.values[0], -limits.max_angle, limits.max_angle); } } return violation; } static float get_curvature_factor(const float speed, const AngleSteeringParams params) { // Matches VehicleModel.curvature_factor() return 1. / (1. - (params.slip_factor * (speed * speed))) / params.wheelbase; } static float get_angle_from_curvature(const float curvature, const float curvature_factor, const AngleSteeringParams params) { // Matches VehicleModel.get_steer_from_curvature() static const float RAD_TO_DEG = 57.29577951308232; return curvature * params.steer_ratio / curvature_factor * RAD_TO_DEG; } bool steer_angle_cmd_checks_vm(int desired_angle, bool steer_control_enabled, const AngleSteeringLimits limits, const AngleSteeringParams params) { // This check uses a simple vehicle model to allow for constant lateral acceleration and jerk limits across all speeds. // TODO: remove the inaccurate breakpoint angle limiting function above and always use this one // Highway curves are rolled in the direction of the turn, add tolerance to compensate static const float MAX_LATERAL_ACCEL = ISO_LATERAL_ACCEL + (EARTH_G * AVERAGE_ROAD_ROLL); // ~3.6 m/s^2 // Lower than ISO 11270 lateral jerk limit, which is 5.0 m/s^3 static const float MAX_LATERAL_JERK = 3.0 + (EARTH_G * AVERAGE_ROAD_ROLL); // ~3.6 m/s^3 const float fudged_speed = MAX((vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.0, 1.0); const float curvature_factor = get_curvature_factor(fudged_speed, params); bool violation = false; if (controls_allowed && steer_control_enabled) { // *** ISO lateral jerk limit *** // calculate maximum angle rate per second const float max_curvature_rate_sec = MAX_LATERAL_JERK / (fudged_speed * fudged_speed); const float max_angle_rate_sec = get_angle_from_curvature(max_curvature_rate_sec, curvature_factor, params); // finally get max angle delta per frame const float max_angle_delta = max_angle_rate_sec / (float)limits.frequency; const int max_angle_delta_can = (max_angle_delta * limits.angle_deg_to_can) + 1.; // NOTE: symmetric up and down limits const int highest_desired_angle = desired_angle_last + max_angle_delta_can; const int lowest_desired_angle = desired_angle_last - max_angle_delta_can; violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle); // *** ISO lateral accel limit *** const float max_curvature = MAX_LATERAL_ACCEL / (fudged_speed * fudged_speed); const float max_angle = get_angle_from_curvature(max_curvature, curvature_factor, params); const int max_angle_can = (max_angle * limits.angle_deg_to_can) + 1.; violation |= max_limit_check(desired_angle, max_angle_can, -max_angle_can); // *** angle real time rate limit check *** violation |= rt_angle_rate_limit_check(limits); } desired_angle_last = desired_angle; // Angle should either be 0 or same as current angle while not steering if (!steer_control_enabled) { const int max_inactive_angle = CLAMP(angle_meas.max, -limits.max_angle, limits.max_angle) + 1; const int min_inactive_angle = CLAMP(angle_meas.min, -limits.max_angle, limits.max_angle) - 1; violation |= max_limit_check(desired_angle, max_inactive_angle, min_inactive_angle); } // No angle control allowed when controls are not allowed if (!controls_allowed) { violation |= steer_control_enabled; } // reset to current angle if either controls is not allowed or there's a violation if (violation || !controls_allowed) { desired_angle_last = CLAMP(angle_meas.values[0], -limits.max_angle, limits.max_angle); } return violation; }