import unittest from tinygrad import Tensor from tinygrad.helpers import RANGEIFY, Context, GlobalCounters from tinygrad.uop.ops import UOp N = 256 @unittest.skipIf(RANGEIFY<1, "tests only for RANGEIFY") class TestRangeify(unittest.TestCase): def test_expand_children(self): A = Tensor.empty(N, N).sum(axis=1) ba = A.expand(N, N) ((ba+1).sum(axis=1) + (ba+2).sum(axis=0)).realize() def test_partial_contig(self): A = Tensor.empty(64, 64, 64) ret = A.sum(axis=2).contiguous(arg=(1,)).sum(axis=1) ret.realize() def test_double_gemm_real(self): def go(): with Context(DEBUG=0): Tensor.manual_seed(1337) A,B,C = [Tensor.randn(N, N) for _ in range(3)] Tensor.realize(A, B, C) GlobalCounters.reset() return (A@B@C).realize() rng = go() with Context(RANGEIFY=0, DEBUG=2): ref = go() mse = ((rng-ref)**2).sum().item() print(f"mse: {mse}") self.assertLessEqual(mse, 1e-2) def test_double_gemm(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) (A@B@C).realize() def test_double_gemm_exp(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) (((A@B).exp()@C).exp()).realize() def test_double_gemm_relu(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) (((A@B).relu()@C).relu()).realize() def test_double_gemm_relu_half_contig(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) (((A@B).relu().contiguous(arg=(1,))@C).relu()).realize() def test_double_gemm_half_contig(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) ((A@B).contiguous(arg=(1,))@C).realize() def test_double_gemm_contig(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) ((A@B).contiguous()@C).realize() def test_many_gemm(self): A = Tensor.empty(N, N) B = Tensor.empty(N, N) C = Tensor.empty(N, N) D = Tensor.empty(N, N) E = Tensor.empty(N, N) F = Tensor.empty(N, N) (A@B@C@D@E@F).realize() def test_conv2d(self): x = Tensor.empty(1, 4, 32, 32) w1 = Tensor.empty(8, 4, 3, 3) x.conv2d(w1).realize() def test_conv2d_t(self): x = Tensor.empty(1, 4, 32, 32) w1 = Tensor.empty(8, 4, 3, 3) (x*2).conv2d(w1).realize() def test_double_conv2d(self): x = Tensor.empty(1, 4, 32, 32) w1 = Tensor.empty(8, 4, 3, 3) w2 = Tensor.empty(12, 8, 3, 3) x.conv2d(w1).conv2d(w2).realize() def test_double_conv2d_half_contig(self): x = Tensor.empty(1, 4, 32, 32) w1 = Tensor.empty(8, 4, 3, 3) w2 = Tensor.empty(12, 8, 3, 3) # NOTE: this contiguous doesn't help x.conv2d(w1).contiguous(arg=(1,)).conv2d(w2).permute(0,2,3,1).contiguous().realize() def test_double_conv2d_contig(self): x = Tensor.empty(1, 4, 32, 32) w1 = Tensor.empty(8, 4, 3, 3) w2 = Tensor.empty(12, 8, 3, 3) x.conv2d(w1).contiguous().conv2d(w2).realize() def test_transformer_ffn(self): from tinygrad.apps.llm import TransformerBlock from tinygrad import nn blk = TransformerBlock(1024, 4096, 1, 1, 1e-5) for p in nn.state.get_parameters(blk): p.replace(Tensor.empty(p.shape)) x = Tensor.empty(128, 1024) out = blk._feed_forward(x) out.realize() def test_flash_attention(self): BS, HEADS, SEQLEN, EMB = 4, 2, 16, 8 # bigger #BS, HEADS, SEQLEN, EMB = 4, 32, 1024, 64 # llama 8B #BS, HEADS, SEQLEN, EMB = 4, 32, 2048, 128 def fa(): Tensor.manual_seed(1337) with Context(DEBUG=0): q,k,v = [Tensor.rand(BS, HEADS, SEQLEN, EMB).contiguous().realize() for _ in range(3)] return q.scaled_dot_product_attention(k, v).realize() with Context(DEBUG=4): GlobalCounters.reset() ret = fa() with Context(RANGEIFY=0): with Context(DEBUG=2): GlobalCounters.reset() cmp = fa() with Context(DEBUG=0): mse = ((cmp-ret)**2).sum().item() print(f"mse: {mse}") self.assertLessEqual(mse, 1e-6) # contiguous + reduce can support ranges? @unittest.skipIf(RANGEIFY<1, "tests only for RANGEIFY") class TestOuterworld(unittest.TestCase): def test_passthrough_range(self): t = Tensor.rand(10, 10).realize() # passthrough ranges a = UOp.range(10, -1) sel = t[a] cpy = sel.contiguous(a).realize() self.assertTrue((t==cpy).all().item()) def test_flip_range(self): t = Tensor.rand(10, 10).realize() # passthrough ranges a = UOp.range(10, -1) sel = t[9-a] cpy = sel.contiguous(a).realize() self.assertTrue((t.flip(0)==cpy).all().item()) def test_vmap(self): def f(x): return x.sum(axis=0)*2 x = Tensor.ones(3, 10, 2).contiguous() # vmap across axis 0 a = UOp.range(3, -1) out = f(x[a]) out = out.contiguous(a) # 3x2 grid of 20 out.realize() print(out.numpy()) def test_triple_gemm(self): x = Tensor.rand(1, 16).realize() W = Tensor.rand(3, 16, 16).realize() manual = (x @ W[0] @ W[1] @ W[2]).contiguous().realize() a = UOp.range(3, -1) x = x.assign(x @ W[a]) out = x.contiguous(a)[-1].contiguous().realize() self.assertTrue((manual==out).all().item()) if __name__ == '__main__': unittest.main()