import unittest from test.helpers import assert_jit_cache_len from tinygrad import Variable, Tensor, TinyJit import numpy as np class TestSymbolicJit(unittest.TestCase): def test_plus1(self): def f(a): return (a+1).realize() jf = TinyJit(f) a = Tensor.rand(3, 10) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(a[:, :vi]).reshape(3, i).numpy() expected = f(a[:, :i]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_add(self): def f(a, b): return (a+b).realize() jf = TinyJit(f) a = Tensor.rand(3, 10) b = Tensor.rand(3, 10) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(a[:, :vi], b[:, :vi]).reshape(3, i).numpy() expected = f(a[:, :i], b[:, :i]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_matmul(self): def f(a, b): return (a@b).realize() jf = TinyJit(f) a = Tensor.rand(3, 10) b = Tensor.rand(10, 5) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(a[:, :vi], b[:vi, :]).numpy() expected = f(a[:, :i], b[:i, :]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_mixed_with_no_symbol_kernel(self): def f(a, b): s = (a@b).realize() s = (s+s).realize() # this one does not have symbols in input return s jf = TinyJit(f) a = Tensor.rand(3, 10) b = Tensor.rand(10, 5) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(a[:, :vi], b[:vi, :]).numpy() expected = f(a[:, :i], b[:i, :]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 2) def test_attention(self): def f(q, k, v): return Tensor.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).realize() jf = TinyJit(f) q = Tensor.rand(2, 1, 4, 8) k = Tensor.rand(2, 10, 4, 8) v = Tensor.rand(2, 10, 4, 8) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(q, k[:, :vi], v[:, :vi]).reshape(2, 4, 1, 8).numpy() expected = f(q, k[:, :i], v[:, :i]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 5) def test_cat_dim0(self): def f(a, b): return a.cat(b, dim=0).realize() jf = TinyJit(f) a = Tensor.rand(10, 3) b = Tensor.rand(2, 3) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(a[:vi], b).reshape(i+2, 3).numpy() expected = f(a[:i], b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_cat_dim1(self): def f(a, b): return a.cat(b, dim=1).realize() jf = TinyJit(f) a = Tensor.rand(3, 10) b = Tensor.rand(3, 2) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(a[:, :vi], b).reshape(3, i+2).numpy() expected = f(a[:, :i], b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_cat_dim0_two_vars(self): def f(a, b): return a.cat(b, dim=0).realize() jf = TinyJit(f) a = Tensor.rand(10, 3) b = Tensor.rand(10, 3) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) symbolic = jf(a[:vi], b[:vj]).reshape(i+j, 3).numpy() expected = f(a[:i], b[:j]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_cat_dim1_two_vars(self): def f(a, b): return a.cat(b, dim=1).realize() jf = TinyJit(f) a = Tensor.rand(3, 10) b = Tensor.rand(3, 10) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) symbolic = jf(a[:, :vi], b[:, :vj]).reshape(3, i+j).numpy() expected = f(a[:, :i], b[:, :j]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_two_vars_plus1_ij(self): def f(a, b): return (a@b+1).realize() jf = TinyJit(f) a = Tensor.rand(10, 3) b = Tensor.rand(3, 10) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) symbolic = jf(a[:vi, :], b[:, :vj]).reshape(i, j).numpy() expected = f(a[:i, :], b[:, :j]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_two_vars_plus1_ji(self): def f(a, b): return (a@b+1).realize() jf = TinyJit(f) a = Tensor.rand(10, 3) b = Tensor.rand(3, 10) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) symbolic = jf(a[:vj, :], b[:, :vi]).reshape(j, i).numpy() expected = f(a[:j, :], b[:, :i]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_jit_symbolic_shape_mismatch(self): @TinyJit def add(a, b): return (a+b).realize() a = Tensor.rand(3, 10) b = Tensor.rand(3, 10) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) add(a[:, :vi], b[:, :vi]) vi2 = Variable("i", 1, 10).bind(7) a = Tensor.rand(3, 7)[:, :vi2] bad = Tensor.rand(4, 7)[:, :vi2] with self.assertRaises(AssertionError): add(a, bad) def test_shrink(self): # shrink is a movement, so we pair it with a simple function to test the JIT interaction def f(a): return (a+1).realize() jf = TinyJit(f) a = Tensor.rand(7, 11) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = a.shrink(((3,5),(vi,vi+2))) symbolic = jf(symbolic).numpy() expected = f(a.shrink(((3,5),(i,i+2)))).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_slice(self): # slice is a movement, so we pair it with a simple function to test the JIT interaction def f(a): return (a+1).realize() jf = TinyJit(f) a = Tensor.rand(7, 11) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = a[3:5, vi:vi+2] symbolic = jf(symbolic).numpy() expected = f(a[3:5, i:i+2]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_slice_var_shape(self): def f(a): return (a+1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.ones(vi, 11).contiguous() symbolic = a[:, 1:2] symbolic = jf(symbolic).reshape(i, 1).numpy() expected = f(a.reshape(i, 11)[:, 1:2]).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert_jit_cache_len(jf, 1) def test_ones_sum(self): def f(a): return a.sum().realize() jf = TinyJit(f) t = Tensor.ones(10) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) symbolic = jf(t[:vi]).item() expected = f(t[:i]).item() np.testing.assert_equal(symbolic, expected) def test_mean(self): def f(a): return a.mean().realize() def f0(a): return a.mean(0).realize() def f1(a): return a.mean(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) a = Tensor.rand(10, 3) b = Tensor.rand(10, 3) c = Tensor.rand(10, 3) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) # axis = None symbolic = jf(a[:vi]).numpy() expected = a[:i].mean().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 0 symbolic = jf0(b[:vi]).numpy() expected = b[:i].mean(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 1 symbolic = jf1(c[:vi]).reshape(i).numpy() expected = c[:i].mean(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_mean_2d(self): def f(a): return a.mean().realize() def f0(a): return a.mean(0).realize() def f1(a): return a.mean(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) a = Tensor.rand(10, 10) b = Tensor.rand(10, 10) c = Tensor.rand(10, 10) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) # axis = None symbolic = jf(a[:vi, :vj]).numpy() expected = a[:i, :j].mean().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 0 symbolic = jf0(b[:vi, :vj]).reshape(j).numpy() expected = b[:i, :j].mean(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 1 symbolic = jf1(c[:vi, :vj]).reshape(i).numpy() expected = c[:i, :j].mean(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_var(self): def f(a): return a.var().realize() def f0(a): return a.var(0).realize() def f1(a): return a.var(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) a = Tensor.rand(10, 3) b = Tensor.rand(10, 3) c = Tensor.rand(10, 3) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) # axis = None symbolic = jf(a[:vi]).numpy() expected = a[:i].var().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 0 symbolic = jf0(b[:vi]).numpy() expected = b[:i].var(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 1 symbolic = jf1(c[:vi]).reshape(i).numpy() expected = c[:i].var(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_var_2d(self): def f(a): return a.var().realize() def f0(a): return a.var(0).realize() def f1(a): return a.var(1).realize() jf = TinyJit(f) jf0 = TinyJit(f0) jf1 = TinyJit(f1) a = Tensor.rand(10, 10) b = Tensor.rand(10, 10) c = Tensor.rand(10, 10) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) # axis = None symbolic = jf(a[:vi, :vj]).numpy() expected = a[:i, :j].var().numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 0 symbolic = jf0(b[:vi, :vj]).reshape(j).numpy() expected = b[:i, :j].var(0).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) # axis = 1 symbolic = jf1(c[:vi, :vj]).reshape(i).numpy() expected = c[:i, :j].var(1).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) if __name__ == '__main__': unittest.main()