#!/usr/bin/env python3
'''
This process finds calibration values. More info on what these calibration values
are can be found here https://github.com/commaai/openpilot/tree/master/common/transformations
While the roll calibration is a real value that can be estimated, here we assume it's zero,
and the image input into the neural network is not corrected for roll.
'''

import gc
import os
import capnp
import numpy as np
from typing import List, NoReturn, Optional

from cereal import car, log
import cereal.messaging as messaging
from common.conversions import Conversions as CV
from common.params import Params, put_nonblocking
from common.realtime import set_realtime_priority
from common.transformations.model import model_height
from common.transformations.camera import get_view_frame_from_road_frame
from common.transformations.orientation import rot_from_euler, euler_from_rot
from selfdrive.swaglog import cloudlog

MIN_SPEED_FILTER = 15 * CV.MPH_TO_MS
MAX_VEL_ANGLE_STD = np.radians(0.25)
MAX_YAW_RATE_FILTER = np.radians(2)  # per second

# This is at model frequency, blocks needed for efficiency
SMOOTH_CYCLES = 400
BLOCK_SIZE = 100
INPUTS_NEEDED = 5   # Minimum blocks needed for valid calibration
INPUTS_WANTED = 50   # We want a little bit more than we need for stability
MAX_ALLOWED_SPREAD = np.radians(2)
RPY_INIT = np.array([0.0,0.0,0.0])

# These values are needed to accommodate biggest modelframe
PITCH_LIMITS = np.array([-0.09074112085129739, 0.14907572052989657])
YAW_LIMITS = np.array([-0.06912048084718224, 0.06912048084718235])
DEBUG = os.getenv("DEBUG") is not None


class Calibration:
  UNCALIBRATED = 0
  CALIBRATED = 1
  INVALID = 2


def is_calibration_valid(rpy: np.ndarray) -> bool:
  return (PITCH_LIMITS[0] < rpy[1] < PITCH_LIMITS[1]) and (YAW_LIMITS[0] < rpy[2] < YAW_LIMITS[1])  # type: ignore


def sanity_clip(rpy: np.ndarray) -> np.ndarray:
  if np.isnan(rpy).any():
    rpy = RPY_INIT
  return np.array([rpy[0],
                   np.clip(rpy[1], PITCH_LIMITS[0] - .005, PITCH_LIMITS[1] + .005),
                   np.clip(rpy[2], YAW_LIMITS[0] - .005, YAW_LIMITS[1] + .005)])


class Calibrator:
  def __init__(self, param_put: bool = False):
    self.param_put = param_put

    self.CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))

    # Read saved calibration
    params = Params()
    calibration_params = params.get("CalibrationParams")
    self.wide_camera = params.get_bool('WideCameraOnly')
    rpy_init = RPY_INIT
    valid_blocks = 0

    if param_put and calibration_params:
      try:
        msg = log.Event.from_bytes(calibration_params)
        rpy_init = np.array(msg.liveCalibration.rpyCalib)
        valid_blocks = msg.liveCalibration.validBlocks
      except Exception:
        cloudlog.exception("Error reading cached CalibrationParams")

    self.reset(rpy_init, valid_blocks)
    self.update_status()

  def reset(self, rpy_init: np.ndarray = RPY_INIT, valid_blocks: int = 0, smooth_from: Optional[np.ndarray] = None) -> None:
    if not np.isfinite(rpy_init).all():
      self.rpy = RPY_INIT.copy()
    else:
      self.rpy = rpy_init.copy()

    if not np.isfinite(valid_blocks) or valid_blocks < 0:
      self.valid_blocks = 0
    else:
      self.valid_blocks = valid_blocks

    self.rpys = np.tile(self.rpy, (INPUTS_WANTED, 1))

    self.idx = 0
    self.block_idx = 0
    self.v_ego = 0.0

    if smooth_from is None:
      self.old_rpy = RPY_INIT
      self.old_rpy_weight = 0.0
    else:
      self.old_rpy = smooth_from
      self.old_rpy_weight = 1.0

  def get_valid_idxs(self) -> List[int]:
    # exclude current block_idx from validity window
    before_current = list(range(self.block_idx))
    after_current = list(range(min(self.valid_blocks, self.block_idx + 1), self.valid_blocks))
    return before_current + after_current

  def update_status(self) -> None:
    valid_idxs = self.get_valid_idxs()
    if valid_idxs:
      rpys = self.rpys[valid_idxs]
      self.rpy = np.mean(rpys, axis=0)
      max_rpy_calib = np.array(np.max(rpys, axis=0))
      min_rpy_calib = np.array(np.min(rpys, axis=0))
      self.calib_spread = np.abs(max_rpy_calib - min_rpy_calib)
    else:
      self.calib_spread = np.zeros(3)

    if self.valid_blocks < INPUTS_NEEDED:
      self.cal_status = Calibration.UNCALIBRATED
    elif is_calibration_valid(self.rpy):
      self.cal_status = Calibration.CALIBRATED
    else:
      self.cal_status = Calibration.INVALID

    # If spread is too high, assume mounting was changed and reset to last block.
    # Make the transition smooth. Abrupt transitions are not good for feedback loop through supercombo model.
    if max(self.calib_spread) > MAX_ALLOWED_SPREAD and self.cal_status == Calibration.CALIBRATED:
      self.reset(self.rpys[self.block_idx - 1], valid_blocks=INPUTS_NEEDED, smooth_from=self.rpy)

    write_this_cycle = (self.idx == 0) and (self.block_idx % (INPUTS_WANTED//5) == 5)
    if self.param_put and write_this_cycle:
      put_nonblocking("CalibrationParams", self.get_msg().to_bytes())

  def handle_v_ego(self, v_ego: float) -> None:
    self.v_ego = v_ego

  def get_smooth_rpy(self) -> np.ndarray:
    if self.old_rpy_weight > 0:
      return self.old_rpy_weight * self.old_rpy + (1.0 - self.old_rpy_weight) * self.rpy
    else:
      return self.rpy

  def handle_cam_odom(self, trans: List[float], rot: List[float], trans_std: List[float]) -> Optional[np.ndarray]:
    self.old_rpy_weight = min(0.0, self.old_rpy_weight - 1/SMOOTH_CYCLES)

    straight_and_fast = ((self.v_ego > MIN_SPEED_FILTER) and (trans[0] > MIN_SPEED_FILTER) and (abs(rot[2]) < MAX_YAW_RATE_FILTER))
    if self.wide_camera:
      angle_std_threshold = 4*MAX_VEL_ANGLE_STD
    else:
      angle_std_threshold = MAX_VEL_ANGLE_STD
    certain_if_calib = ((np.arctan2(trans_std[1], trans[0]) < angle_std_threshold) or
                        (self.valid_blocks < INPUTS_NEEDED))
    if not (straight_and_fast and certain_if_calib):
      return None

    observed_rpy = np.array([0,
                             -np.arctan2(trans[2], trans[0]),
                             np.arctan2(trans[1], trans[0])])
    new_rpy = euler_from_rot(rot_from_euler(self.get_smooth_rpy()).dot(rot_from_euler(observed_rpy)))
    new_rpy = sanity_clip(new_rpy)

    self.rpys[self.block_idx] = (self.idx*self.rpys[self.block_idx] + (BLOCK_SIZE - self.idx) * new_rpy) / float(BLOCK_SIZE)
    self.idx = (self.idx + 1) % BLOCK_SIZE
    if self.idx == 0:
      self.block_idx += 1
      self.valid_blocks = max(self.block_idx, self.valid_blocks)
      self.block_idx = self.block_idx % INPUTS_WANTED

    self.update_status()

    return new_rpy

  def get_msg(self) -> capnp.lib.capnp._DynamicStructBuilder:
    smooth_rpy = self.get_smooth_rpy()
    extrinsic_matrix = get_view_frame_from_road_frame(0, smooth_rpy[1], smooth_rpy[2], model_height)

    msg = messaging.new_message('liveCalibration')
    liveCalibration = msg.liveCalibration

    liveCalibration.validBlocks = self.valid_blocks
    liveCalibration.calStatus = self.cal_status
    liveCalibration.calPerc = min(100 * (self.valid_blocks * BLOCK_SIZE + self.idx) // (INPUTS_NEEDED * BLOCK_SIZE), 100)
    liveCalibration.extrinsicMatrix = extrinsic_matrix.flatten().tolist()
    liveCalibration.rpyCalib = smooth_rpy.tolist()
    liveCalibration.rpyCalibSpread = self.calib_spread.tolist()

    if self.CP.notCar:
      extrinsic_matrix = get_view_frame_from_road_frame(0, 0, 0, model_height)
      liveCalibration.validBlocks = INPUTS_NEEDED
      liveCalibration.calStatus = Calibration.CALIBRATED
      liveCalibration.calPerc = 100.
      liveCalibration.extrinsicMatrix = extrinsic_matrix.flatten().tolist()
      liveCalibration.rpyCalib = [0, 0, 0]
      liveCalibration.rpyCalibSpread = self.calib_spread.tolist()

    return msg

  def send_data(self, pm: messaging.PubMaster) -> None:
    pm.send('liveCalibration', self.get_msg())


def calibrationd_thread(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None) -> NoReturn:
  gc.disable()
  set_realtime_priority(1)

  if sm is None:
    sm = messaging.SubMaster(['cameraOdometry', 'carState'], poll=['cameraOdometry'])

  if pm is None:
    pm = messaging.PubMaster(['liveCalibration'])

  calibrator = Calibrator(param_put=True)

  while 1:
    timeout = 0 if sm.frame == -1 else 100
    sm.update(timeout)

    if sm.updated['cameraOdometry']:
      calibrator.handle_v_ego(sm['carState'].vEgo)
      new_rpy = calibrator.handle_cam_odom(sm['cameraOdometry'].trans,
                                           sm['cameraOdometry'].rot,
                                           sm['cameraOdometry'].transStd)

      if DEBUG and new_rpy is not None:
        print('got new rpy', new_rpy)

    # 4Hz driven by cameraOdometry
    if sm.frame % 5 == 0:
      calibrator.send_data(pm)


def main(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None) -> NoReturn:
  calibrationd_thread(sm, pm)


if __name__ == "__main__":
  main()