import unittest import numpy as np from tinygrad import Tensor, GlobalCounters, dtypes, Context, nn from tinygrad.helpers import CI, Profiling, WINO, getenv class TestWinogradClose(unittest.TestCase): def test_close(self): inp = Tensor.rand(1, 16, 16, 16) conv = nn.Conv2d(16, 16, 3) conv(inp).realize() # warmup GlobalCounters.reset() print("non winograd") with Context(WINO=0): cmp = conv(inp).realize() # warmup GlobalCounters.reset() print("winograd") with Context(WINO=1): test = conv(inp).realize() np.testing.assert_allclose(cmp.numpy(), test.numpy(), atol=1e-5) class TestWinograd(unittest.TestCase): def setUp(self): self.old = WINO.value WINO.value = 1 def tearDown(self): WINO.value = self.old def test_profile(self): x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize() with Profiling(enabled=not CI, sort='time'): out = Tensor.conv2d(x,w).realize() out.numpy() def test_four_kernels(self): x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize() GlobalCounters.reset() out = Tensor.conv2d(x,w).realize() assert GlobalCounters.kernel_count == 4 out.numpy() @unittest.skipIf(getenv("PTX"), "winograd uses too much in PTX") def test_counters(self): IC, OC, X, Y = 4,4,9,9 #OC, IC, X, Y = 512, 256, 8, 8 x,w = Tensor.rand(1,IC,Y,X).realize(), Tensor.rand(OC,IC,3,3).realize() GlobalCounters.reset() Tensor.conv2d(x,w).realize() ops_wino, mem_wino = GlobalCounters.global_ops, GlobalCounters.global_mem WINO.value = 0 GlobalCounters.reset() Tensor.conv2d(x,w).realize() ops_normal, mem_normal = GlobalCounters.global_ops, GlobalCounters.global_mem ops_ratio, mem_ratio = ops_wino/ops_normal, mem_wino/mem_normal print(f"ops: normal {ops_normal:9d} wino {ops_wino:9d} ratio {ops_ratio:.2f}") print(f"mem: normal {mem_normal:9d} wino {mem_wino:9d} ratio {mem_ratio:.2f}") self.assertLess(ops_ratio, 2.6) # TODO: there's issues with factorization now self.assertLess(mem_ratio, 10) def test_dtype(self): IC, OC, X, Y = 4,4,9,9 x,w = Tensor.empty(1,IC,Y,X), Tensor.empty(OC,IC,3,3) self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.default_float) x,w = Tensor.empty(1,IC,Y,X,dtype=dtypes.half), Tensor.empty(OC,IC,3,3,dtype=dtypes.half) self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.half) if __name__ == '__main__': unittest.main(verbosity=2)