import unittest from tinygrad import Tensor, Variable from tinygrad.shape.shapetracker import View from tinygrad.helpers import Context, GlobalCounters from tinygrad.ops import sym_infer from examples.gpt2 import Attention import numpy as np class TestSymbolicOps(unittest.TestCase): def setUp(self): # A lot of these test are out of bounds, so we ignore the bounds check self.context = Context(IGNORE_OOB=1) self.context.__enter__() def tearDown(self): self.context.__exit__(None, None, None) def test_plus1(self): def f(a): return (a+1).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) symbolic = f(a.reshape(3, vi)).reshape(3, i).numpy() expected = f(a).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_add(self): def f(a, b): return (a+b).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(3, i) symbolic = f(a.reshape(3, vi), b.reshape(3, vi)).reshape(3, i).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_matmul(self): def f(a, b): return (a@b).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(i, 5) symbolic = f(a.reshape(3, vi), b.reshape(vi, 5)).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_attention(self, dropout_p=0.0, imin=1, imax=5, use_symbolic=True): def f(q, k, v): return Tensor.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p).realize() for i in range(imin, imax): vi = Variable("i", 1, 10).bind(i) if use_symbolic else i q = Tensor.rand(2, 1, 4, 8) k = Tensor.rand(2, i, 4, 8) v = Tensor.rand(2, i, 4, 8) Tensor.realize(q, k, v) GlobalCounters.reset() symbolic = f(q, k.reshape(2, vi, 4, 8), v.reshape(2, vi, 4, 8)).reshape(2, 4, 1, 8).numpy() expected = f(q, k, v).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_attention_cmp_symbolic(self): # symbolic isn't seeing if i == i, so it's not putting them on the same axis self.test_attention(imin=4, imax=5, use_symbolic=False) self.test_attention(imin=4, imax=5, use_symbolic=True) # until this works, symbolic single kernel softmax won't @unittest.expectedFailure def test_attention_simple_view(self): i = Variable("i", 2, 10) v1 = View.create((2,4,1,i,i), ((i*4),i,0,0,1)) v2 = View.create((2,4,1,i,i,i), (((i*i)*4),(i*i),0,0,i,1)) self.assertIsNotNone(v1+v2) def test_attention_training(self): with Tensor.train(): self.test_attention(dropout_p=0.0) with self.assertRaises(ValueError): # symbolic shape dropout is not supported self.test_attention(dropout_p=0.5) def test_attention_pos_0_sz_0(self): Attention(128, 8)(Tensor.ones(1, 0, 128), Variable("start_pos", 0, 128).bind(0), None) def test_attention_pos_0_sz_1(self): Attention(128, 8)(Tensor.ones(1, 1, 128), Variable("start_pos", 0, 128).bind(0), None) def test_attention_pos_0_sz_2(self): Attention(128, 8)(Tensor.ones(1, 2, 128), Variable("start_pos", 0, 128).bind(0), None) def test_cat_dim0(self): def f(a, b): return a.cat(b, dim=0).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(i, 3) b = Tensor.rand(2, 3) symbolic = f(a.reshape(vi, 3), b).reshape(i+2, 3).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_cat_dim1(self): def f(a, b): return a.cat(b, dim=1).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(3, 2) symbolic = f(a.reshape(3, vi), b).reshape(3, i+2).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_cat_dim0_two_vars(self): def f(a, b): return a.cat(b, dim=0).realize() for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(i, 3) b = Tensor.rand(j, 3) symbolic = f(a.reshape(vi, 3), b.reshape(vj, 3)).reshape(i+j, 3).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_cat_dim1_two_vars(self): def f(a, b): return a.cat(b, dim=1).realize() for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(3, i) b = Tensor.rand(3, j) symbolic = f(a.reshape(3, vi), b.reshape(3, vj)).reshape(3, i+j).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_two_vars_plus1_ij(self): def f(a, b): return (a@b+1).realize() for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(i, 3) b = Tensor.rand(3, j) symbolic = f(a.reshape(vi, 3), b.reshape(3, vj)).reshape(i, j).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_two_vars_plus1_ji(self): # reverse the order of variables def f(a, b): return (a@b+1).realize() for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(j, 3) b = Tensor.rand(3, i) symbolic = f(a.reshape(vj, 3), b.reshape(3, vi)).reshape(j, i).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_shrink(self): for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(7, 11) symbolic = a.shrink(((3,5),(vi,vi+2))) symbolic = symbolic.numpy() expected = a.shrink(((3,5),(i,i+2))).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_slice(self): for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(7, 11) symbolic = a[3:5, vi:vi+2] symbolic = symbolic.numpy() expected = a[3:5, i:i+2].numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_ones_sum(self): for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) t = Tensor.ones(i) symbolic = t.reshape(vi).sum().item() expected = t.sum().item() np.testing.assert_equal(symbolic, expected) def test_mean(self): for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) for axis in [None, 0, 1]: a = Tensor.rand(i, 3) expected = a.mean(axis).numpy() symbolic = a.reshape(vi, 3).mean(axis).reshape(expected.shape).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_mean_2d(self): for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) for axis in [None, 0, 1]: a = Tensor.rand(i, j) expected = a.mean(axis).numpy() symbolic = a.reshape(vi, vj).mean(axis).reshape(expected.shape).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_var(self): for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) for axis in [None, 0, 1]: a = Tensor.rand(i, 3) expected = a.var(axis).numpy() symbolic = a.reshape(vi, 3).var(axis).reshape(expected.shape).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) def test_var_2d(self): for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) for axis in [None, 0, 1]: a = Tensor.rand(i, j) expected = a.var(axis).numpy() symbolic = a.reshape(vi, vj).var(axis).reshape(expected.shape).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) @unittest.expectedFailure def test_conv2d_ceildiv_edge_case(self): v = Variable('v', 11, 50_000) val = 39601 x = Tensor.randn(1, 22, 39601).reshape(1, 22, v.bind(val)) weight = Tensor.randn(256, 22, 12) result = x.conv2d(weight=weight, groups=1, stride=6, dilation=1, padding=(3, 3)) var_val = {v: val} shape = tuple(sym_infer(s, var_val) for s in result.shape) self.assertEqual(shape, (1, 256, 6600)) # TODO: fails if ceildiv is incorrect # TODO: test output is correct if __name__ == '__main__': unittest.main()