import unittest, math import numpy as np from tinygrad import dtypes from tinygrad.ops import UOp, Ops from tinygrad.codegen.transcendental import TRANSCENDENTAL_SUPPORTED_DTYPES, payne_hanek_reduction, cody_waite_reduction from tinygrad.codegen.transcendental import frexp, rintk, xpow, xexp2, xlog2, trig_poly, pow2if from test.helpers import eval_uop class TestTranscendentalFunctions(unittest.TestCase): def test_payne_hanek_reduction(self): # TODO: Test constant input when constant folding is fixed (or maybe test both variants) # Load input value from a buffer to prevent constant folding input_buf = UOp(Ops.DEFINE_GLOBAL, dtypes.double.ptr(), arg=1, src=()) loaded_value = UOp.load(input_buf.index(UOp.const(dtypes.int, 0)), dtype=dtypes.double) def eval_payne_hanek_reduction(v:float) -> tuple[float, int]: return tuple(eval_uop(u, [(dtypes.float64, [v])]) for u in payne_hanek_reduction(loaded_value)) r, q = eval_payne_hanek_reduction(12 * math.pi + 0.1) np.testing.assert_allclose(r, 0.1 - math.pi / 2) np.testing.assert_equal(q, 1) r, q = eval_payne_hanek_reduction(12 * math.pi) np.testing.assert_allclose(r, 0.0, atol=1e-8) np.testing.assert_equal(q, 4) r, q = eval_payne_hanek_reduction(12 * math.pi - 0.1) np.testing.assert_allclose(r, -0.1) np.testing.assert_equal(q, 4) def test_cody_waite_reduction(self): r, q = (eval_uop(u) for u in cody_waite_reduction(UOp.const(dtypes.float64, 12 * math.pi + 0.1))) np.testing.assert_allclose(r, 0.1) np.testing.assert_equal(q, 12) def test_frexp(self): for x in (1, -1): mantissa, exponent = (eval_uop(u) for u in frexp(UOp.const(dtypes.float64, x))) np.testing.assert_equal(mantissa, 0.5) np.testing.assert_equal(exponent, 1) for x in (2, -2): mantissa, exponent = (eval_uop(u) for u in frexp(UOp.const(dtypes.float64, 2.0))) np.testing.assert_equal(mantissa, 0.5) np.testing.assert_equal(exponent, 2) mantissa, exponent = (eval_uop(u) for u in frexp(UOp.const(dtypes.float64, 5.0))) np.testing.assert_equal(mantissa, 0.625) np.testing.assert_equal(exponent, 3) mantissa, exponent = (eval_uop(u) for u in frexp(UOp.const(dtypes.float64, 1000.0))) np.testing.assert_allclose(mantissa, 0.9765625) np.testing.assert_equal(exponent, 10) def test_rintk(self): np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, 0.0))), 0) np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, 5.0))), 5) np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, 5.5))), 6) np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, 5.999))), 6) np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, -5.0))), -5) np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, -5.5))), -6) np.testing.assert_allclose(eval_uop(rintk(UOp.const(dtypes.float, -5.999))), -6) def test_pow2if(self): np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, 0), dtypes.float)), 1.0) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, 1), dtypes.float)), 2.0) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, 2), dtypes.float)), 4.0) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, 10), dtypes.float)), 1024.0) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, 63), dtypes.float)), 2**63) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, -1), dtypes.float)), 0.5) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, -2), dtypes.float)), 0.25) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, -10), dtypes.float)), 2**-10) np.testing.assert_allclose(eval_uop(pow2if(UOp.const(dtypes.int, -63), dtypes.float)), 2**-63) class TestTranscendentalVectorizedFunctions(unittest.TestCase): # given a scalar and vectorized input, check that the fxn outputs have the same # scalar_dtypes, args, ops, and vcount (only for vectorized input) def _check_uop_vcount(self, u:tuple|UOp, vcount:int): # check all UOps in u are vectorized with vcount if isinstance(u, UOp): assert u.dtype.vcount == vcount, f'expected {vcount=} but got {u.dtype.vcount=} for UOp\n{u=}' [self._check_uop_vcount(x, vcount) for x in (u if isinstance(u, tuple) else u.src)] def _check_uops_match(self, u1:tuple|UOp, u2:tuple|UOp): # check all UOps in u1, u2 have the same scalar_dtype, args, ops if isinstance(u1, UOp) and isinstance(u2, UOp): assert u1.dtype.scalar() == u2.dtype.scalar(), f'expected {u1.dtype.scalar()=} but got {u2.dtype.scalar()=} for UOps\n{u1=}\n{u2}' assert u1.arg == u2.arg or (math.isnan(u1.arg) and math.isnan(u2.arg)), f'expected {u1.arg=} but got {u2.arg=} for UOps\n{u1=}\n{u2}' assert u1.op == u2.op, f'expected {u1.op=} but got {u2.op=} for UOps\n{u1=}\n{u2}' [self._check_uops_match(x1, x2) for x1, x2 in zip((u1 if isinstance(u1, tuple) else u1.src), (u2 if isinstance(u2, tuple) else u2.src))] def _test_vectorized(self, fxn, scalar_dtypes=TRANSCENDENTAL_SUPPORTED_DTYPES, vals=[-2,1.3,194], vcounts=[1,4,19]): for scalar_dtype in scalar_dtypes: for val in vals: for vcount in vcounts: in_scalar, in_vec = UOp.const(scalar_dtype, val), UOp.const(scalar_dtype.vec(vcount), val) out_scalar, out_vec = fxn(in_scalar), fxn(in_vec) self._check_uops_match(out_scalar, out_vec) self._check_uop_vcount(out_vec, vcount) def test_xpow(self): return self._test_vectorized(lambda x: xpow(x, x)) def test_xexp2(self): return self._test_vectorized(xexp2) def test_xlog2(self): return self._test_vectorized(xlog2) def test_payne_hanek_reduction(self): return self._test_vectorized(payne_hanek_reduction) def test_cody_waite_reduction(self): return self._test_vectorized(cody_waite_reduction) def test_trig_poly(self): return self._test_vectorized(lambda x: trig_poly(x, [0.0], [1.0])) if __name__ == '__main__': unittest.main()