import numpy as np import pyray as rl from dataclasses import dataclass from openpilot.selfdrive.ui.ui_state import ui_state, UI_BORDER_SIZE from openpilot.system.ui.lib.application import gui_app # Default 3D coordinates for face keypoints as a NumPy array DEFAULT_FACE_KPTS_3D = np.array([ [-5.98, -51.20, 8.00], [-17.64, -49.14, 8.00], [-23.81, -46.40, 8.00], [-29.98, -40.91, 8.00], [-32.04, -37.49, 8.00], [-34.10, -32.00, 8.00], [-36.16, -21.03, 8.00], [-36.16, 6.40, 8.00], [-35.47, 10.51, 8.00], [-32.73, 19.43, 8.00], [-29.30, 26.29, 8.00], [-24.50, 33.83, 8.00], [-19.01, 41.37, 8.00], [-14.21, 46.17, 8.00], [-12.16, 47.54, 8.00], [-4.61, 49.60, 8.00], [4.99, 49.60, 8.00], [12.53, 47.54, 8.00], [14.59, 46.17, 8.00], [19.39, 41.37, 8.00], [24.87, 33.83, 8.00], [29.67, 26.29, 8.00], [33.10, 19.43, 8.00], [35.84, 10.51, 8.00], [36.53, 6.40, 8.00], [36.53, -21.03, 8.00], [34.47, -32.00, 8.00], [32.42, -37.49, 8.00], [30.36, -40.91, 8.00], [24.19, -46.40, 8.00], [18.02, -49.14, 8.00], [6.36, -51.20, 8.00], [-5.98, -51.20, 8.00], ], dtype=np.float32) # UI constants BTN_SIZE = 192 IMG_SIZE = 144 ARC_LENGTH = 133 ARC_THICKNESS_DEFAULT = 6.7 ARC_THICKNESS_EXTEND = 12.0 SCALES_POS = np.array([0.9, 0.4, 0.4], dtype=np.float32) SCALES_NEG = np.array([0.7, 0.4, 0.4], dtype=np.float32) ARC_POINT_COUNT = 37 # Number of points in the arc ARC_ANGLES = np.linspace(0.0, np.pi, ARC_POINT_COUNT, dtype=np.float32) @dataclass class ArcData: """Data structure for arc rendering parameters.""" x: float y: float width: float height: float thickness: float class DriverStateRenderer: def __init__(self): # Initial state with NumPy arrays self.face_kpts_draw = DEFAULT_FACE_KPTS_3D.copy() self.is_active = False self.is_rhd = False self.dm_fade_state = 0.0 self.state_updated = False self.last_rect: rl.Rectangle = rl.Rectangle(0, 0, 0, 0) self.driver_pose_vals = np.zeros(3, dtype=np.float32) self.driver_pose_diff = np.zeros(3, dtype=np.float32) self.driver_pose_sins = np.zeros(3, dtype=np.float32) self.driver_pose_coss = np.zeros(3, dtype=np.float32) self.face_keypoints_transformed = np.zeros((DEFAULT_FACE_KPTS_3D.shape[0], 2), dtype=np.float32) self.position_x: float = 0.0 self.position_y: float = 0.0 self.h_arc_data = None self.v_arc_data = None # Pre-allocate drawing arrays self.face_lines = [rl.Vector2(0, 0) for _ in range(len(DEFAULT_FACE_KPTS_3D))] self.h_arc_lines = [rl.Vector2(0, 0) for _ in range(ARC_POINT_COUNT)] self.v_arc_lines = [rl.Vector2(0, 0) for _ in range(ARC_POINT_COUNT)] # Load the driver face icon self.dm_img = gui_app.texture("icons/driver_face.png", IMG_SIZE, IMG_SIZE) # Colors self.white_color = rl.Color(255, 255, 255, 255) self.arc_color = rl.Color(26, 242, 66, 255) self.engaged_color = rl.Color(26, 242, 66, 255) self.disengaged_color = rl.Color(139, 139, 139, 255) def draw(self, rect, sm): if not self._is_visible(sm): return self._update_state(sm, rect) if not self.state_updated: return # Set opacity based on active state opacity = 0.65 if self.is_active else 0.2 # Draw background circle rl.draw_circle(int(self.position_x), int(self.position_y), BTN_SIZE // 2, rl.Color(0, 0, 0, 70)) # Draw face icon icon_pos = rl.Vector2(self.position_x - self.dm_img.width // 2, self.position_y - self.dm_img.height // 2) rl.draw_texture_v(self.dm_img, icon_pos, rl.Color(255, 255, 255, int(255 * opacity))) # Draw face outline self.white_color.a = int(255 * opacity) rl.draw_spline_linear(self.face_lines, len(self.face_lines), 5.2, self.white_color) # Set arc color based on engaged state self.arc_color = self.engaged_color if ui_state.engaged else self.disengaged_color self.arc_color.a = int(0.4 * 255 * (1.0 - self.dm_fade_state)) # Fade out when inactive # Draw arcs if self.h_arc_data: rl.draw_spline_linear(self.h_arc_lines, len(self.h_arc_lines), self.h_arc_data.thickness, self.arc_color) if self.v_arc_data: rl.draw_spline_linear(self.v_arc_lines, len(self.v_arc_lines), self.v_arc_data.thickness, self.arc_color) def _is_visible(self, sm): """Check if the visualization should be rendered.""" return (sm.recv_frame['driverStateV2'] > ui_state.started_frame and sm.seen['driverMonitoringState'] and sm['selfdriveState'].alertSize == 0) def _update_state(self, sm, rect): """Update the driver monitoring state based on model data""" if not sm.updated["driverMonitoringState"]: if self.state_updated and (rect.x != self.last_rect.x or rect.y != self.last_rect.y or \ rect.width != self.last_rect.width or rect.height != self.last_rect.height): self._pre_calculate_drawing_elements(rect) return # Get monitoring state dm_state = sm["driverMonitoringState"] self.is_active = dm_state.isActiveMode self.is_rhd = dm_state.isRHD # Update fade state (smoother transition between active/inactive) fade_target = 0.0 if self.is_active else 0.5 self.dm_fade_state = np.clip(self.dm_fade_state + 0.2 * (fade_target - self.dm_fade_state), 0.0, 1.0) # Get driver orientation data from appropriate camera driverstate = sm["driverStateV2"] driver_data = driverstate.rightDriverData if self.is_rhd else driverstate.leftDriverData driver_orient = driver_data.faceOrientation # Update pose values with scaling and smoothing driver_orient = np.array(driver_orient) scales = np.where(driver_orient < 0, SCALES_NEG, SCALES_POS) v_this = driver_orient * scales self.driver_pose_diff = np.abs(self.driver_pose_vals - v_this) self.driver_pose_vals = 0.8 * v_this + 0.2 * self.driver_pose_vals # Smooth changes # Apply fade to rotation and compute sin/cos rotation_amount = self.driver_pose_vals * (1.0 - self.dm_fade_state) self.driver_pose_sins = np.sin(rotation_amount) self.driver_pose_coss = np.cos(rotation_amount) # Create rotation matrix for 3D face model sin_y, sin_x, sin_z = self.driver_pose_sins cos_y, cos_x, cos_z = self.driver_pose_coss r_xyz = np.array( [ [cos_x * cos_z, cos_x * sin_z, -sin_x], [-sin_y * sin_x * cos_z - cos_y * sin_z, -sin_y * sin_x * sin_z + cos_y * cos_z, -sin_y * cos_x], [cos_y * sin_x * cos_z - sin_y * sin_z, cos_y * sin_x * sin_z + sin_y * cos_z, cos_y * cos_x], ] ) # Transform face keypoints using vectorized matrix multiplication self.face_kpts_draw = DEFAULT_FACE_KPTS_3D @ r_xyz.T self.face_kpts_draw[:, 2] = self.face_kpts_draw[:, 2] * (1.0 - self.dm_fade_state) + 8 * self.dm_fade_state # Pre-calculate the transformed keypoints kp_depth = (self.face_kpts_draw[:, 2] - 8) / 120.0 + 1.0 self.face_keypoints_transformed = self.face_kpts_draw[:, :2] * kp_depth[:, None] # Pre-calculate all drawing elements self._pre_calculate_drawing_elements(rect) self.state_updated = True def _pre_calculate_drawing_elements(self, rect): """Pre-calculate all drawing elements based on the current rectangle""" # Calculate icon position (bottom-left or bottom-right) width, height = rect.width, rect.height offset = UI_BORDER_SIZE + BTN_SIZE // 2 self.position_x = rect.x + (width - offset if self.is_rhd else offset) self.position_y = rect.y + height - offset # Pre-calculate the face lines positions positioned_keypoints = self.face_keypoints_transformed + np.array([self.position_x, self.position_y]) for i in range(len(positioned_keypoints)): self.face_lines[i].x = positioned_keypoints[i][0] self.face_lines[i].y = positioned_keypoints[i][1] # Calculate arc dimensions based on head rotation delta_x = -self.driver_pose_sins[1] * ARC_LENGTH / 2.0 # Horizontal movement delta_y = -self.driver_pose_sins[0] * ARC_LENGTH / 2.0 # Vertical movement # Horizontal arc h_width = abs(delta_x) self.h_arc_data = self._calculate_arc_data( delta_x, h_width, self.position_x, self.position_y - ARC_LENGTH / 2, self.driver_pose_sins[1], self.driver_pose_diff[1], is_horizontal=True ) # Vertical arc v_height = abs(delta_y) self.v_arc_data = self._calculate_arc_data( delta_y, v_height, self.position_x - ARC_LENGTH / 2, self.position_y, self.driver_pose_sins[0], self.driver_pose_diff[0], is_horizontal=False ) def _calculate_arc_data( self, delta: float, size: float, x: float, y: float, sin_val: float, diff_val: float, is_horizontal: bool ): """Calculate arc data and pre-compute arc points.""" if size <= 0: return None thickness = ARC_THICKNESS_DEFAULT + ARC_THICKNESS_EXTEND * min(1.0, diff_val * 5.0) start_angle = (90 if sin_val > 0 else -90) if is_horizontal else (0 if sin_val > 0 else 180) x = min(x + delta, x) if is_horizontal else x y = y if is_horizontal else min(y + delta, y) arc_data = ArcData( x=x, y=y, width=size if is_horizontal else ARC_LENGTH, height=ARC_LENGTH if is_horizontal else size, thickness=thickness, ) # Pre-calculate arc points angles = ARC_ANGLES + np.deg2rad(start_angle) center_x = x + arc_data.width / 2 center_y = y + arc_data.height / 2 radius_x = arc_data.width / 2 radius_y = arc_data.height / 2 x_coords = center_x + np.cos(angles) * radius_x y_coords = center_y + np.sin(angles) * radius_y arc_lines = self.h_arc_lines if is_horizontal else self.v_arc_lines for i, (x_coord, y_coord) in enumerate(zip(x_coords, y_coords, strict=True)): arc_lines[i].x = x_coord arc_lines[i].y = y_coord return arc_data