#!/usr/bin/env python3 import math import numpy as np import cereal.messaging as messaging from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX from openpilot.common.conversions import Conversions as CV from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.realtime import DT_MDL from openpilot.selfdrive.modeld.constants import ModelConstants from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, get_speed_error from openpilot.selfdrive.car.cruise import V_CRUISE_MAX, V_CRUISE_UNSET from openpilot.common.swaglog import cloudlog LON_MPC_STEP = 0.2 # first step is 0.2s A_CRUISE_MIN = -1.2 A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6] A_CRUISE_MAX_BP = [0., 10.0, 25., 40.] CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N] ALLOW_THROTTLE_THRESHOLD = 0.5 MIN_ALLOW_THROTTLE_SPEED = 2.5 # Lookup table for turns _A_TOTAL_MAX_V = [1.7, 3.2] _A_TOTAL_MAX_BP = [20., 40.] def get_max_accel(v_ego): return np.interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS) def get_coast_accel(pitch): return np.sin(pitch) * -5.65 - 0.3 # fitted from data using xx/projects/allow_throttle/compute_coast_accel.py def limit_accel_in_turns(v_ego, angle_steers, a_target, CP): """ This function returns a limited long acceleration allowed, depending on the existing lateral acceleration this should avoid accelerating when losing the target in turns """ # FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel # The lookup table for turns should also be updated if we do this a_total_max = np.interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V) a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase) a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.)) return [a_target[0], min(a_target[1], a_x_allowed)] def get_accel_from_plan(speeds, accels, action_t=DT_MDL, vEgoStopping=0.05): if len(speeds) == CONTROL_N: v_now = speeds[0] a_now = accels[0] v_target = np.interp(action_t, CONTROL_N_T_IDX, speeds) a_target = 2 * (v_target - v_now) / (action_t) - a_now v_target_1sec = np.interp(action_t + 1.0, CONTROL_N_T_IDX, speeds) else: v_target = 0.0 v_target_1sec = 0.0 a_target = 0.0 should_stop = (v_target < vEgoStopping and v_target_1sec < vEgoStopping) return a_target, should_stop class LongitudinalPlanner: def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL): self.CP = CP self.mpc = LongitudinalMpc(dt=dt) self.fcw = False self.dt = dt self.allow_throttle = True self.a_desired = init_a self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt) self.v_model_error = 0.0 self.v_desired_trajectory = np.zeros(CONTROL_N) self.a_desired_trajectory = np.zeros(CONTROL_N) self.j_desired_trajectory = np.zeros(CONTROL_N) self.solverExecutionTime = 0.0 @staticmethod def parse_model(model_msg, model_error): if (len(model_msg.position.x) == ModelConstants.IDX_N and len(model_msg.velocity.x) == ModelConstants.IDX_N and len(model_msg.acceleration.x) == ModelConstants.IDX_N): x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x) j = np.zeros(len(T_IDXS_MPC)) else: x = np.zeros(len(T_IDXS_MPC)) v = np.zeros(len(T_IDXS_MPC)) a = np.zeros(len(T_IDXS_MPC)) j = np.zeros(len(T_IDXS_MPC)) if len(model_msg.meta.disengagePredictions.gasPressProbs) > 1: throttle_prob = model_msg.meta.disengagePredictions.gasPressProbs[1] else: throttle_prob = 1.0 return x, v, a, j, throttle_prob def update(self, sm): self.mpc.mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc' if len(sm['carControl'].orientationNED) == 3: accel_coast = get_coast_accel(sm['carControl'].orientationNED[1]) else: accel_coast = ACCEL_MAX v_ego = sm['carState'].vEgo v_cruise_kph = min(sm['carState'].vCruise, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS v_cruise_initialized = sm['carState'].vCruise != V_CRUISE_UNSET long_control_off = sm['controlsState'].longControlState == LongCtrlState.off force_slow_decel = sm['controlsState'].forceDecel # Reset current state when not engaged, or user is controlling the speed reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['selfdriveState'].enabled # PCM cruise speed may be updated a few cycles later, check if initialized reset_state = reset_state or not v_cruise_initialized # No change cost when user is controlling the speed, or when standstill prev_accel_constraint = not (reset_state or sm['carState'].standstill) if self.mpc.mode == 'acc': accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)] steer_angle_without_offset = sm['carState'].steeringAngleDeg - sm['liveParameters'].angleOffsetDeg accel_limits_turns = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_limits, self.CP) else: accel_limits = [ACCEL_MIN, ACCEL_MAX] accel_limits_turns = [ACCEL_MIN, ACCEL_MAX] if reset_state: self.v_desired_filter.x = v_ego # Clip aEgo to cruise limits to prevent large accelerations when becoming active self.a_desired = np.clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1]) # Prevent divergence, smooth in current v_ego self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego)) # Compute model v_ego error self.v_model_error = get_speed_error(sm['modelV2'], v_ego) x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'], self.v_model_error) # Don't clip at low speeds since throttle_prob doesn't account for creep self.allow_throttle = throttle_prob > ALLOW_THROTTLE_THRESHOLD or v_ego <= MIN_ALLOW_THROTTLE_SPEED if not self.allow_throttle: clipped_accel_coast = max(accel_coast, accel_limits_turns[0]) clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_limits_turns[1], clipped_accel_coast]) accel_limits_turns[1] = min(accel_limits_turns[1], clipped_accel_coast_interp) if force_slow_decel: v_cruise = 0.0 # clip limits, cannot init MPC outside of bounds accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05) accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05) self.mpc.set_weights(prev_accel_constraint, personality=sm['selfdriveState'].personality) self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1]) self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired) self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=sm['selfdriveState'].personality) self.v_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.v_solution) self.a_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.a_solution) self.j_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC[:-1], self.mpc.j_solution) # TODO counter is only needed because radar is glitchy, remove once radar is gone self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill if self.fcw: cloudlog.info("FCW triggered") # Interpolate 0.05 seconds and save as starting point for next iteration a_prev = self.a_desired self.a_desired = float(np.interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory)) self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0 def publish(self, sm, pm): plan_send = messaging.new_message('longitudinalPlan') plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'selfdriveState']) longitudinalPlan = plan_send.longitudinalPlan longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2'] longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2'] longitudinalPlan.solverExecutionTime = self.mpc.solve_time longitudinalPlan.speeds = self.v_desired_trajectory.tolist() longitudinalPlan.accels = self.a_desired_trajectory.tolist() longitudinalPlan.jerks = self.j_desired_trajectory.tolist() longitudinalPlan.hasLead = sm['radarState'].leadOne.status longitudinalPlan.longitudinalPlanSource = self.mpc.source longitudinalPlan.fcw = self.fcw action_t = self.CP.longitudinalActuatorDelay + DT_MDL a_target, should_stop = get_accel_from_plan(longitudinalPlan.speeds, longitudinalPlan.accels, action_t=action_t, vEgoStopping=self.CP.vEgoStopping) longitudinalPlan.aTarget = float(a_target) longitudinalPlan.shouldStop = bool(should_stop) longitudinalPlan.allowBrake = True longitudinalPlan.allowThrottle = bool(self.allow_throttle) pm.send('longitudinalPlan', plan_send)