import math import numpy as np from common.numpy_fast import interp from common.realtime import sec_since_boot from selfdrive.modeld.constants import T_IDXS from selfdrive.controls.lib.radar_helpers import _LEAD_ACCEL_TAU from selfdrive.controls.lib.lead_mpc_lib import libmpc_py from selfdrive.controls.lib.drive_helpers import MPC_COST_LONG, CONTROL_N from selfdrive.swaglog import cloudlog MPC_T = list(np.arange(0,1.,.2)) + list(np.arange(1.,10.6,.6)) class LeadMpc(): def __init__(self, mpc_id): self.lead_id = mpc_id self.reset_mpc() self.prev_lead_status = False self.prev_lead_x = 0.0 self.new_lead = False self.last_cloudlog_t = 0.0 self.n_its = 0 self.duration = 0 self.status = False self.v_solution = np.zeros(CONTROL_N) self.a_solution = np.zeros(CONTROL_N) self.j_solution = np.zeros(CONTROL_N) def reset_mpc(self): ffi, self.libmpc = libmpc_py.get_libmpc(self.lead_id) self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE, MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK) self.mpc_solution = ffi.new("log_t *") self.cur_state = ffi.new("state_t *") self.cur_state[0].v_ego = 0 self.cur_state[0].a_ego = 0 self.a_lead_tau = _LEAD_ACCEL_TAU def set_cur_state(self, v, a): v_safe = max(v, 1e-3) a_safe = a self.cur_state[0].v_ego = v_safe self.cur_state[0].a_ego = a_safe def update(self, CS, radarstate, v_cruise): v_ego = CS.vEgo if self.lead_id == 0: lead = radarstate.leadOne else: lead = radarstate.leadTwo self.status = lead.status # Setup current mpc state self.cur_state[0].x_ego = 0.0 if lead is not None and lead.status: x_lead = lead.dRel v_lead = max(0.0, lead.vLead) a_lead = lead.aLeadK if (v_lead < 0.1 or -a_lead / 2.0 > v_lead): v_lead = 0.0 a_lead = 0.0 self.a_lead_tau = lead.aLeadTau self.new_lead = False if not self.prev_lead_status or abs(x_lead - self.prev_lead_x) > 2.5: self.libmpc.init_with_simulation(v_ego, x_lead, v_lead, a_lead, self.a_lead_tau) self.new_lead = True self.prev_lead_status = True self.prev_lead_x = x_lead self.cur_state[0].x_l = x_lead self.cur_state[0].v_l = v_lead else: self.prev_lead_status = False # Fake a fast lead car, so mpc keeps running self.cur_state[0].x_l = 50.0 self.cur_state[0].v_l = v_ego + 10.0 a_lead = 0.0 self.a_lead_tau = _LEAD_ACCEL_TAU # Calculate mpc t = sec_since_boot() self.n_its = self.libmpc.run_mpc(self.cur_state, self.mpc_solution, self.a_lead_tau, a_lead) self.v_solution = interp(T_IDXS[:CONTROL_N], MPC_T, self.mpc_solution.v_ego) self.a_solution = interp(T_IDXS[:CONTROL_N], MPC_T, self.mpc_solution.a_ego) self.j_solution = interp(T_IDXS[:CONTROL_N], MPC_T[:-1], self.mpc_solution.j_ego) self.duration = int((sec_since_boot() - t) * 1e9) # Reset if NaN or goes through lead car crashing = any(lead - ego < -50 for (lead, ego) in zip(self.mpc_solution[0].x_l, self.mpc_solution[0].x_ego)) nans = any(math.isnan(x) for x in self.mpc_solution[0].v_ego) backwards = min(self.mpc_solution[0].v_ego) < -0.15 if ((backwards or crashing) and self.prev_lead_status) or nans: if t > self.last_cloudlog_t + 5.0: self.last_cloudlog_t = t cloudlog.warning("Longitudinal mpc %d reset - backwards: %s crashing: %s nan: %s" % ( self.lead_id, backwards, crashing, nans)) self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE, MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK) self.cur_state[0].v_ego = v_ego self.cur_state[0].a_ego = 0.0 self.a_mpc = CS.aEgo self.prev_lead_status = False