import numpy as np """ Coordinate transformation module. All methods accept arrays as input with each row as a position. """ a = 6378137 b = 6356752.3142 esq = 6.69437999014 * 0.001 e1sq = 6.73949674228 * 0.001 def geodetic2ecef(geodetic, radians=False): geodetic = np.array(geodetic) input_shape = geodetic.shape geodetic = np.atleast_2d(geodetic) ratio = 1.0 if radians else (np.pi / 180.0) lat = ratio*geodetic[:, 0] lon = ratio*geodetic[:, 1] alt = geodetic[:, 2] xi = np.sqrt(1 - esq * np.sin(lat)**2) x = (a / xi + alt) * np.cos(lat) * np.cos(lon) y = (a / xi + alt) * np.cos(lat) * np.sin(lon) z = (a / xi * (1 - esq) + alt) * np.sin(lat) ecef = np.array([x, y, z]).T return ecef.reshape(input_shape) def ecef2geodetic(ecef, radians=False): """ Convert ECEF coordinates to geodetic using ferrari's method """ # Save shape and export column ecef = np.atleast_1d(ecef) input_shape = ecef.shape ecef = np.atleast_2d(ecef) x, y, z = ecef[:, 0], ecef[:, 1], ecef[:, 2] ratio = 1.0 if radians else (180.0 / np.pi) # Conver from ECEF to geodetic using Ferrari's methods # https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution r = np.sqrt(x * x + y * y) Esq = a * a - b * b F = 54 * b * b * z * z G = r * r + (1 - esq) * z * z - esq * Esq C = (esq * esq * F * r * r) / (pow(G, 3)) S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C)) P = F / (3 * pow((S + 1 / S + 1), 2) * G * G) Q = np.sqrt(1 + 2 * esq * esq * P) r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) - \ P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r) U = np.sqrt(pow((r - esq * r_0), 2) + z * z) V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z) Z_0 = b * b * z / (a * V) h = U * (1 - b * b / (a * V)) lat = ratio*np.arctan((z + e1sq * Z_0) / r) lon = ratio*np.arctan2(y, x) # stack the new columns and return to the original shape geodetic = np.column_stack((lat, lon, h)) return geodetic.reshape(input_shape) class LocalCoord(): """ Allows conversions to local frames. In this case NED. That is: North East Down from the start position in meters. """ def __init__(self, init_geodetic, init_ecef): self.init_ecef = init_ecef lat, lon, _ = (np.pi/180)*np.array(init_geodetic) self.ned2ecef_matrix = np.array([[-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon)], [-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)], [np.cos(lat), 0, -np.sin(lat)]]) self.ecef2ned_matrix = self.ned2ecef_matrix.T self.ecef_from_ned_matrix = self.ned2ecef_matrix self.ned_from_ecef_matrix = self.ecef2ned_matrix @classmethod def from_geodetic(cls, init_geodetic): init_ecef = geodetic2ecef(init_geodetic) return LocalCoord(init_geodetic, init_ecef) @classmethod def from_ecef(cls, init_ecef): init_geodetic = ecef2geodetic(init_ecef) return LocalCoord(init_geodetic, init_ecef) def ecef2ned(self, ecef): ecef = np.array(ecef) return np.dot(self.ecef2ned_matrix, (ecef - self.init_ecef).T).T def ned2ecef(self, ned): ned = np.array(ned) # Transpose so that init_ecef will broadcast correctly for 1d or 2d ned. return (np.dot(self.ned2ecef_matrix, ned.T).T + self.init_ecef) def geodetic2ned(self, geodetic): ecef = geodetic2ecef(geodetic) return self.ecef2ned(ecef) def ned2geodetic(self, ned): ecef = self.ned2ecef(ned) return ecef2geodetic(ecef)