import random import numpy as np import time import pytest from cereal import messaging from openpilot.selfdrive.locationd.lagd import LateralLagEstimator, retrieve_initial_lag, masked_normalized_cross_correlation from openpilot.selfdrive.test.process_replay.migration import migrate, migrate_carParams from openpilot.selfdrive.locationd.test.test_locationd_scenarios import TEST_ROUTE from openpilot.common.params import Params from openpilot.tools.lib.logreader import LogReader from openpilot.system.hardware import PC MAX_ERR_FRAMES = 1 DT = 0.05 def run_estimator_on_fake_data(estimator, dt, lag_frames, n_frames, mocker): class ZeroMock(mocker.Mock): def __getattr__(self, *args): return 0 for i in range(n_frames): t = i * dt vego = 20.0 desired_cuvature = np.cos(t) / (vego ** 2) actual_yr = np.cos(t - lag_frames * dt) / vego msgs = [ (t, "carControl", mocker.Mock(latActive=True)), (t, "carState", mocker.Mock(vEgo=vego, steeringPressed=False)), (t, "controlsState", mocker.Mock(desiredCurvature=desired_cuvature, lateralControlState=mocker.Mock(which=mocker.Mock(return_value='debugControlState'), debugControlState=ZeroMock()))), (t, "livePose", mocker.Mock(orientationNED=ZeroMock(), velocityDevice=ZeroMock(), accelerationDevice=ZeroMock(), angularVelocityDevice=ZeroMock(z=actual_yr))), ] for t, w, m in msgs: estimator.handle_log(t, w, m) estimator.update_points() estimator.update_estimate() class TestLagd: def test_read_saved_params(self): params = Params() lr = migrate(LogReader(TEST_ROUTE), [migrate_carParams]) CP = next(m for m in lr if m.which() == "carParams").carParams msg = messaging.new_message('liveDelay') msg.liveDelay.lateralDelayEstimate = random.random() msg.liveDelay.validBlocks = random.randint(1, 10) params.put("LiveLag", msg.to_bytes()) params.put("CarParamsPrevRoute", CP.as_builder().to_bytes()) saved_lag_params = retrieve_initial_lag(params, CP) assert saved_lag_params is not None lag, valid_blocks = saved_lag_params assert lag == msg.liveDelay.lateralDelayEstimate assert valid_blocks == msg.liveDelay.validBlocks def test_ncc(self): lag_frames = random.randint(1, 19) desired_sig = np.sin(np.arange(0.0, 10.0, 0.1)) actual_sig = np.sin(np.arange(0.0, 10.0, 0.1) - lag_frames * 0.1) mask = np.ones(len(desired_sig), dtype=bool) corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20] assert np.argmax(corr) == lag_frames # add some noise desired_sig += np.random.normal(0, 0.05, len(desired_sig)) actual_sig += np.random.normal(0, 0.05, len(actual_sig)) corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20] assert np.argmax(corr) in range(lag_frames - MAX_ERR_FRAMES, lag_frames + MAX_ERR_FRAMES + 1) def test_empty_estimator(self, mocker): mocked_CP = mocker.Mock(steerActuatorDelay=0.8) estimator = LateralLagEstimator(mocked_CP, DT) msg = estimator.get_msg(True) assert msg.liveDelay.status == 'unestimated' assert np.allclose(msg.liveDelay.lateralDelay, 1.0) def test_estimator(self, mocker): iters = 100 lag_frames = random.randint(1, 19) mocked_CP = mocker.Mock(steerActuatorDelay=1.0) estimator = LateralLagEstimator(mocked_CP, DT, block_count=10, min_valid_block_count=0, block_size=1, okay_window_sec=iters * DT, min_recovery_buffer_sec=0, min_yr=0) run_estimator_on_fake_data(estimator, DT, lag_frames, iters, mocker) # expect one block filled, with lateralDelayEstimate equal to lateralDelay equal to lag_frames output = estimator.get_msg(True) assert output.liveDelay.status == 'estimated' assert np.allclose(output.liveDelay.lateralDelay, lag_frames * DT, atol=0.01) assert np.allclose(output.liveDelay.lateralDelayEstimate, output.liveDelay.lateralDelay, atol=0.01) assert output.liveDelay.validBlocks == 1 @pytest.mark.skipif(PC, reason="only on device") @pytest.mark.timeout(30) def test_estimator_performance(self, mocker): mocked_CP = mocker.Mock(steerActuatorDelay=0.1) estimator = LateralLagEstimator(mocked_CP, DT) ds = [] for _ in range(1000): st = time.perf_counter() estimator.update_points() estimator.update_estimate() d = time.perf_counter() - st ds.append(d) assert np.mean(ds) < DT