# tinygrad is a tensor library, and as a tensor library it has multiple parts # 1. a "runtime". this allows buffer management, compilation, and running programs # 2. a "Device" that uses the runtime but specifies compute in an abstract way for all # 3. a "LazyBuffer" that fuses the compute into kernels, using memory only when needed # 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()" print("******** first, the runtime ***********") from tinygrad.runtime.ops_cpu import ClangJITCompiler, MallocAllocator, CPUProgram # allocate some buffers out = MallocAllocator.alloc(4) a = MallocAllocator.alloc(4) b = MallocAllocator.alloc(4) # load in some values (little endian) MallocAllocator._copyin(a, memoryview(bytearray([2,0,0,0]))) MallocAllocator._copyin(b, memoryview(bytearray([3,0,0,0]))) # compile a program to a binary lib = ClangJITCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }") # create a runtime for the program fxn = CPUProgram("add", lib) # run the program fxn(out, a, b) # check the data out print(val := MallocAllocator._as_buffer(out).cast("I").tolist()[0]) assert val == 5 print("******** second, the Device ***********") DEVICE = "CPU" # NOTE: you can change this! import struct from tinygrad.dtype import dtypes from tinygrad.device import Buffer, Device from tinygrad.ops import UOp, Ops from tinygrad.shape.shapetracker import ShapeTracker # allocate some buffers + load in values out = Buffer(DEVICE, 1, dtypes.int32).allocate() a = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 2)))) b = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 3)))) # NOTE: a._buf is the same as the return from MallocAllocator.alloc # describe the computation buf_1 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 1) buf_2 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 2) ld_1 = UOp(Ops.LOAD, dtypes.int32, (buf_1, ShapeTracker.from_shape((1,)).to_uop())) ld_2 = UOp(Ops.LOAD, dtypes.int32, (buf_2, ShapeTracker.from_shape((1,)).to_uop())) alu = ld_1 + ld_2 output_buf = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 0) st_0 = UOp(Ops.STORE, dtypes.void, (output_buf, ShapeTracker.from_shape((1,)).to_uop(), alu)) s = UOp(Ops.SINK, dtypes.void, (st_0,)) # convert the computation to a "linearized" format (print the format) from tinygrad.engine.realize import get_kernel, CompiledRunner kernel = get_kernel(Device[DEVICE].renderer, s).linearize() # compile a program (and print the source) fxn = CompiledRunner(kernel.to_program()) print(fxn.p.src) # NOTE: fxn.clprg is the CPUProgram # run the program fxn.exec([out, a, b]) # check the data out assert out.as_buffer().cast('I')[0] == 5 print("******** third, the LazyBuffer ***********") from tinygrad.engine.realize import run_schedule from tinygrad.engine.schedule import create_schedule_with_vars # allocate some values + load in values a = UOp.metaop(Ops.EMPTY, (1,), dtypes.int32, DEVICE) b = UOp.metaop(Ops.EMPTY, (1,), dtypes.int32, DEVICE) a.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 2)))) b.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 3)))) # describe the computation out = a.alu(Ops.ADD, b) # schedule the computation as a list of kernels sched, _, becomes_map = create_schedule_with_vars(out.sink()) for si in sched: print(si.ast.op) # NOTE: the first two convert it to CPU # NOTE: UOps are no longer mutable, the scheduler gives you a map to lookup which BUFFER the result was written to out = becomes_map[out] # DEBUGGING: print the compute ast print(sched[-1].ast) # NOTE: sched[-1].ast is the same as st_0 above # run that schedule run_schedule(sched) # check the data out assert out.is_realized and out.buffer.as_buffer().cast('I')[0] == 5 print("******** fourth, the Tensor ***********") from tinygrad import Tensor a = Tensor([2], dtype=dtypes.int32, device=DEVICE) b = Tensor([3], dtype=dtypes.int32, device=DEVICE) out = a + b # check the data out print(val:=out.item()) assert val == 5