#include "system/sensord/sensors/lsm6ds3_gyro.h" #include #include #include #include "common/swaglog.h" #include "common/timing.h" #include "common/util.h" #define DEG2RAD(x) ((x) * M_PI / 180.0) LSM6DS3_Gyro::LSM6DS3_Gyro(I2CBus *bus, int gpio_nr, bool shared_gpio) : I2CSensor(bus, gpio_nr, shared_gpio) {} void LSM6DS3_Gyro::wait_for_data_ready() { uint8_t drdy = 0; uint8_t buffer[6]; do { read_register(LSM6DS3_GYRO_I2C_REG_STAT_REG, &drdy, sizeof(drdy)); drdy &= LSM6DS3_GYRO_DRDY_GDA; } while (drdy == 0); read_register(LSM6DS3_GYRO_I2C_REG_OUTX_L_G, buffer, sizeof(buffer)); } void LSM6DS3_Gyro::read_and_avg_data(float* out_buf) { uint8_t drdy = 0; uint8_t buffer[6]; for (int i = 0; i < 5; i++) { do { read_register(LSM6DS3_GYRO_I2C_REG_STAT_REG, &drdy, sizeof(drdy)); drdy &= LSM6DS3_GYRO_DRDY_GDA; } while (drdy == 0); int len = read_register(LSM6DS3_GYRO_I2C_REG_OUTX_L_G, buffer, sizeof(buffer)); assert(len == sizeof(buffer)); for (int j = 0; j < 3; j++) { out_buf[j] += (float)read_16_bit(buffer[j*2], buffer[j*2+1]) * 70.0f; } } // calculate the mg average values for (int i = 0; i < 3; i++) { out_buf[i] /= 5.0f; } } int LSM6DS3_Gyro::self_test(int test_type) { float val_st_off[3] = {0}; float val_st_on[3] = {0}; float test_val[3] = {0}; // prepare sensor for self-test // full scale: 2000dps, ODR: 208Hz int ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, LSM6DS3_GYRO_ODR_208HZ | LSM6DS3_GYRO_FS_2000dps); if (ret < 0) { return ret; } // wait for stable output, and discard first values util::sleep_for(150); wait_for_data_ready(); read_and_avg_data(val_st_off); // enable Self Test positive (or negative) ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL5_C, test_type); if (ret < 0) { return ret; } // wait for stable output, and discard first values util::sleep_for(50); wait_for_data_ready(); read_and_avg_data(val_st_on); // disable sensor ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, 0); if (ret < 0) { return ret; } // disable self test ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL5_C, 0); if (ret < 0) { return ret; } // calculate the mg values for self test for (int i = 0; i < 3; i++) { test_val[i] = fabs(val_st_on[i] - val_st_off[i]); } // verify test result for (int i = 0; i < 3; i++) { if ((LSM6DS3_GYRO_MIN_ST_LIMIT_mdps > test_val[i]) || (test_val[i] > LSM6DS3_GYRO_MAX_ST_LIMIT_mdps)) { return -1; } } return ret; } int LSM6DS3_Gyro::init() { uint8_t value = 0; bool do_self_test = false; const char* env_lsm_selftest =env_lsm_selftest = std::getenv("LSM_SELF_TEST"); if (env_lsm_selftest != nullptr && strncmp(env_lsm_selftest, "1", 1) == 0) { do_self_test = true; } int ret = verify_chip_id(LSM6DS3_GYRO_I2C_REG_ID, {LSM6DS3_GYRO_CHIP_ID, LSM6DS3TRC_GYRO_CHIP_ID}); if (ret == -1) return -1; if (ret == LSM6DS3TRC_GYRO_CHIP_ID) { source = cereal::SensorEventData::SensorSource::LSM6DS3TRC; } ret = init_gpio(); if (ret < 0) { goto fail; } ret = self_test(LSM6DS3_GYRO_POSITIVE_TEST); if (ret < 0) { LOGE("LSM6DS3 gyro positive self-test failed!"); if (do_self_test) goto fail; } ret = self_test(LSM6DS3_GYRO_NEGATIVE_TEST); if (ret < 0) { LOGE("LSM6DS3 gyro negative self-test failed!"); if (do_self_test) goto fail; } // TODO: set scale. Default is +- 250 deg/s ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, LSM6DS3_GYRO_ODR_104HZ); if (ret < 0) { goto fail; } ret = set_register(LSM6DS3_GYRO_I2C_REG_DRDY_CFG, LSM6DS3_GYRO_DRDY_PULSE_MODE); if (ret < 0) { goto fail; } // enable data ready interrupt for gyro on INT1 // (without resetting existing interrupts) ret = read_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, &value, 1); if (ret < 0) { goto fail; } value |= LSM6DS3_GYRO_INT1_DRDY_G; ret = set_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, value); fail: return ret; } int LSM6DS3_Gyro::shutdown() { int ret = 0; // disable data ready interrupt for gyro on INT1 uint8_t value = 0; ret = read_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, &value, 1); if (ret < 0) { goto fail; } value &= ~(LSM6DS3_GYRO_INT1_DRDY_G); ret = set_register(LSM6DS3_GYRO_I2C_REG_INT1_CTRL, value); if (ret < 0) { LOGE("Could not disable lsm6ds3 gyroscope interrupt!"); goto fail; } // enable power-down mode value = 0; ret = read_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, &value, 1); if (ret < 0) { goto fail; } value &= 0x0F; ret = set_register(LSM6DS3_GYRO_I2C_REG_CTRL2_G, value); if (ret < 0) { LOGE("Could not power-down lsm6ds3 gyroscope!"); goto fail; } fail: return ret; } bool LSM6DS3_Gyro::get_event(MessageBuilder &msg, uint64_t ts) { // INT1 shared with accel, check STATUS_REG who triggered uint8_t status_reg = 0; read_register(LSM6DS3_GYRO_I2C_REG_STAT_REG, &status_reg, sizeof(status_reg)); if ((status_reg & LSM6DS3_GYRO_DRDY_GDA) == 0) { return false; } uint8_t buffer[6]; int len = read_register(LSM6DS3_GYRO_I2C_REG_OUTX_L_G, buffer, sizeof(buffer)); assert(len == sizeof(buffer)); float scale = 8.75 / 1000.0; float x = DEG2RAD(read_16_bit(buffer[0], buffer[1]) * scale); float y = DEG2RAD(read_16_bit(buffer[2], buffer[3]) * scale); float z = DEG2RAD(read_16_bit(buffer[4], buffer[5]) * scale); auto event = msg.initEvent().initGyroscope(); event.setSource(source); event.setVersion(2); event.setSensor(SENSOR_GYRO_UNCALIBRATED); event.setType(SENSOR_TYPE_GYROSCOPE_UNCALIBRATED); event.setTimestamp(ts); float xyz[] = {y, -x, z}; auto svec = event.initGyroUncalibrated(); svec.setV(xyz); svec.setStatus(true); return true; }