import CoreML // ANE? let config = MLModelConfiguration() config.computeUnits = .all // CPU? let opts = MLPredictionOptions() opts.usesCPUOnly = false class MNISTInput : MLFeatureProvider { var featureNames: Set { get { return ["image", "image2"] } } func featureValue(for featureName: String) -> MLFeatureValue? { if (featureName == "image") { let tokenIDMultiArray = try? MLMultiArray(shape: [64], dataType: MLMultiArrayDataType.float32) tokenIDMultiArray?[0] = NSNumber(value: 1337) return MLFeatureValue(multiArray: tokenIDMultiArray!) } if (featureName == "image2") { let tokenIDMultiArray = try? MLMultiArray(shape: [64], dataType: MLMultiArrayDataType.float32) tokenIDMultiArray?[0] = NSNumber(value: 1337) return MLFeatureValue(multiArray: tokenIDMultiArray!) } return nil } } let compiledUrl = try MLModel.compileModel(at: URL(string: "test.mlmodel")!) let model = try MLModel(contentsOf: compiledUrl, configuration: config) let out = try model.prediction(from: MNISTInput(), options: opts) print(out.featureValue(for: "probs") as Any)