import ctypes, struct, platform, pathlib, os, binascii, itertools from hexdump import hexdump from tinygrad.helpers import to_mv, DEBUG, getenv, colored, time_to_str from tinygrad.runtime.autogen import libc, cuda from tinygrad.device import CPUProgram, Device from tinygrad.runtime.support.elf import elf_loader from tinygrad.runtime.ops_cuda import cu_time_execution print(f"hooking CUDA runtime, running with {Device.DEFAULT}") # TODO: regen and make cuda 12 default? cuda.cuFuncGetParamInfo = cuda._libraries['libcuda.so'].cuFuncGetParamInfo cuda.cuFuncGetParamInfo.restype = cuda.CUresult cuda.cuFuncGetParamInfo.argtypes = [cuda.CUfunction, cuda.size_t, ctypes.POINTER(ctypes.c_uint64), ctypes.POINTER(ctypes.c_uint64)] ignore_dispatch = [False] # default valus is False def push_ignore_dispatch(val): global ignore_dispatch ignore_dispatch.append(val) def pop_ignore_dispatch(): global ignore_dispatch ignore_dispatch.pop() hooked = {} def _hook(fxn_address_value, tramp): page_address = (fxn_address_value//0x1000)*0x1000 ret = libc.mprotect(page_address, 0x2000, 7) assert ret == 0 libc.memcpy(fxn_address_value, tramp, len(tramp)) ret = libc.mprotect(page_address, 0x2000, 5) assert ret == 0 CPUProgram.rt_lib["__clear_cache"](fxn_address_value, fxn_address_value + len(tramp)) def install_hook(c_function, python_function): python_function_addr = ctypes.cast(ctypes.byref(python_function), ctypes.POINTER(ctypes.c_ulong)).contents.value # AARCH64 trampoline to ioctl if (processor:=platform.processor()) == "aarch64": # 0x0000000000000000: 70 00 00 10 adr x16, #0xc # 0x0000000000000004: 10 02 40 F9 ldr x16, [x16] # 0x0000000000000008: 00 02 1F D6 br x16 tramp = b"\x70\x00\x00\x10\x10\x02\x40\xf9\x00\x02\x1f\xd6" tramp += struct.pack("Q", python_function_addr) elif processor == "x86_64": # 0x0000000000000000: 49 BB aa aa aa aa aa aa aa aa movabs r11,
# 0x000000000000000a: 41 FF E3 jmp r11 tramp = b"\x49\xBB" + struct.pack("Q", python_function_addr) + b"\x41\xFF\xE3" else: raise Exception(f"processor {processor} not supported") tramp = ctypes.create_string_buffer(tramp) # get real function address fxn_address = ctypes.cast(ctypes.byref(c_function), ctypes.POINTER(ctypes.c_ulong)) fxn_address_value = fxn_address.contents.value #print(f"** hooking function at 0x{fxn_address_value}") orig_save = (ctypes.c_char*len(tramp))() libc.memcpy(orig_save, fxn_address_value, len(tramp)) _hook(fxn_address_value, tramp) def original(*args): _hook(fxn_address_value, orig_save) ret = c_function(*args) _hook(fxn_address_value, tramp) return ret return original allocated_memory_enum = 0 allocated_memory = {} function_names = {} tiny_devs = {} seen_modules = set() global_events = [] class HookEvent: pass class HookMemAllocEvent(HookEvent): def __init__(self, cuda_address, bytesize, enum): self.cuda_address, self.bytesize, self.enum = cuda_address, bytesize, enum def __repr__(self): return f"tensor alloc: {self.enum}: {self.cuda_address:#x} - {self.bytesize:#x} bytes" class HookConstParamEvent(HookEvent): def __init__(self, value): self.value = value def __repr__(self): return f"const({self.value:#x})" class HookTensorParamEvent(HookEvent): def __init__(self, cuda_address, offset, enum): self.cuda_address, self.offset, self.enum = cuda_address, offset, enum def __repr__(self): return f"tensor{self.enum}({self.cuda_address:#x}, {self.offset=:#x})" class HookKernelCallEvent(HookEvent): def __init__(self, grid, block, tm, ptm, name, params): self.grid, self.block, self.tm, self.ptm, self.name, self.params = grid, block, tm, ptm, name, params def __repr__(self): return f"kernel call <<{self.grid}>> <<{self.block}>> {self.ptm}\n | {self.params}\n | {self.name}" def collect_events(clear=False): global global_events x = global_events if clear: global_events = [] return x @ctypes.CFUNCTYPE(*([cuda.cuDeviceGet.restype] + cuda.cuDeviceGet.argtypes)) def cuDeviceGet(device, ordinal): tiny_devs[ordinal] = Device[f"{Device.DEFAULT}:{ordinal}"] device.contents.value = ordinal return cuda.CUDA_SUCCESS @ctypes.CFUNCTYPE(*([cuda.cuMemHostAlloc.restype] + cuda.cuMemHostAlloc.argtypes)) def cuMemHostAlloc(pp, bytesize, flags): print(f"cuMemHostAlloc {bytesize}") return hooked["cuMemHostAlloc"](pp, bytesize, flags) @ctypes.CFUNCTYPE(*([cuda.cuModuleLoadData.restype] + cuda.cuModuleLoadData.argtypes)) def cuModuleLoadData(module, image): ret = hooked["cuModuleLoadData"](module, image) module_address = ctypes.addressof(module.contents.contents) seen_modules.add(module_address) return ret @ctypes.CFUNCTYPE(*([cuda.cuModuleGetFunction.restype] + cuda.cuModuleGetFunction.argtypes)) def cuModuleGetFunction(hfunc, hmod, name): ret = hooked["cuModuleGetFunction"](hfunc, hmod, name) python_name = ctypes.string_at(name).decode() # pip install git+https://github.com/wbenny/pydemangler.git import pydemangler demangled_name = pydemangler.demangle(python_name) if demangled_name is not None: python_name = demangled_name # print(f"called cuModuleGetFunction 0x{ctypes.addressof(hmod.contents):X} {python_name}") function_names[ctypes.addressof(hfunc.contents.contents)] = python_name return ret @ctypes.CFUNCTYPE(*([cuda.cuMemAlloc_v2.restype] + cuda.cuMemAlloc_v2.argtypes)) def cuMemAlloc_v2(dptr, bytesize): global allocated_memory_enum, text_prefix ret = hooked["cuMemAlloc_v2"](dptr, bytesize) cuda_address = dptr.contents.value allocated_memory[cuda_address] = (bytesize, allocated_memory_enum) global_events.append(HookMemAllocEvent(cuda_address, bytesize, allocated_memory_enum)) if DEBUG >= 3: print(global_events[-1]) allocated_memory_enum += 1 return ret @ctypes.CFUNCTYPE(*([cuda.cuLaunchKernel.restype] + cuda.cuLaunchKernel.argtypes)) def cuLaunchKernel(f, gridDimX, gridDimY, gridDimZ, blockDimX, blockDimY, blockDimZ, sharedMemBytes, hStream, kernelParams, extra): global ignore_dispatch name = function_names[ctypes.addressof(f.contents)] if ignore_dispatch[-1]: if DEBUG >= 4: print(f"ignoring dispatch {name}") return 0 tm = cu_time_execution(lambda: hooked["cuLaunchKernel"](f, gridDimX, gridDimY, gridDimZ, blockDimX, blockDimY, blockDimZ, sharedMemBytes, hStream, kernelParams, extra), True) ptm = colored(time_to_str(tm, w=9), "yellow" if tm > 0.01 else "green") params = [] while True: ret = cuda.cuFuncGetParamInfo(f, len(params), ctypes.byref(paramOffset:=ctypes.c_size_t()), ctypes.byref(paramSize:=ctypes.c_size_t())) if ret != 0: break params.append((paramOffset.value, paramSize.value)) ev_params = [] if extra: params_ptr = to_mv(extra, 5*8).cast("Q") else: params_ptr = to_mv(kernelParams, len(params)*8).cast("Q") for i,(off,sz) in enumerate(params): sz_to_let = {1: 'B', 2: 'H', 4: 'I', 8: 'Q'} if sz >= 8: for j in range(sz//8): if extra: value = to_mv(params_ptr[1] + off, sz).cast("Q")[0] else: value = to_mv(params_ptr[i] + j*8, 8).cast('Q')[0] has_in_allocated_mem, lcoff, alnum = False, 0, -1 for taddr, (tsz, talnum) in allocated_memory.items(): if taddr <= value < taddr + tsz: has_in_allocated_mem = True lcoff = value - taddr alnum = talnum break if has_in_allocated_mem: ev_params.append(HookTensorParamEvent(value, lcoff, alnum)) else: ev_params.append(HookConstParamEvent(value)) else: if extra: value = to_mv(params_ptr[1] + off, sz).cast(sz_to_let[sz])[0] else: value = to_mv(params_ptr[i], sz).cast(sz_to_let[sz])[0] ev_params.append(HookConstParamEvent(value)) global_events.append(HookKernelCallEvent((gridDimX, gridDimY, gridDimZ), (blockDimX, blockDimY, blockDimZ), tm, ptm, name, ev_params)) if DEBUG >= 3: print(global_events[-1]) return 0 def create_hook(func_name, restype, argtypes): def hook_template(*args): # print(func_name, flush=True) return hooked[func_name](*args) return ctypes.CFUNCTYPE(restype, *argtypes)(hook_template) def install_hooks(): hooked['cuModuleGetFunction'] = install_hook(cuda.cuModuleGetFunction, cuModuleGetFunction) hooked['cuLaunchKernel'] = install_hook(cuda.cuLaunchKernel, cuLaunchKernel) # memory stuff hooked['cuMemAlloc_v2'] = install_hook(cuda.cuMemAlloc_v2, cuMemAlloc_v2) hooked['cuMemHostAlloc'] = install_hook(cuda.cuMemHostAlloc, cuMemHostAlloc) # module loading + not used module loading hooked['cuModuleLoadData'] = install_hook(cuda.cuModuleLoadData, cuModuleLoadData) NVPROFILER = os.environ.get("NV_COMPUTE_PROFILER_PERFWORKS_DIR", None) # realize and wait each aten call if NVPROFILER is None: install_hooks() else: print("Detected NSIGHT Profiled, hooking not avail.") cuda._libraries['libcuda.so'] = ctypes.CDLL(NVPROFILER + "/libcuda-injection.so")