# Copied from https://github.com/mlcommons/training/blob/637c82f9e699cd6caf108f92efb2c1d446b630e0/single_stage_detector/ssd/presets.py from test.external.mlperf_retinanet import transforms as T class DetectionPresetTrain: def __init__(self, data_augmentation, hflip_prob=0.5, mean=(123., 117., 104.)): if data_augmentation == 'hflip': self.transforms = T.Compose([ T.RandomHorizontalFlip(p=hflip_prob), T.ToTensor(), ]) else: raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"') def __call__(self, img, target): return self.transforms(img, target) class DetectionPresetEval: def __init__(self): self.transforms = T.ToTensor() def __call__(self, img, target): return self.transforms(img, target)