from __future__ import annotations import os, ctypes, contextlib, re, functools, mmap, struct, array, sys assert sys.platform != 'win32' from typing import Any, cast, Union, Type, ClassVar from dataclasses import dataclass from tinygrad.runtime.support.hcq import HCQCompiled, HCQAllocator, HCQBuffer, HWQueue, CLikeArgsState, HCQProgram, HCQSignal, BumpAllocator from tinygrad.runtime.support.hcq import HWInterface, MOCKGPU from tinygrad.ops import sint from tinygrad.device import BufferSpec, CPUProgram from tinygrad.helpers import getenv, mv_address, init_c_struct_t, to_mv, round_up, data64, data64_le, DEBUG, prod, OSX from tinygrad.renderer.ptx import PTXRenderer from tinygrad.renderer.cstyle import NVRenderer from tinygrad.runtime.support.compiler_cuda import CUDACompiler, PTXCompiler, PTX, NVPTXCompiler, NVCompiler from tinygrad.runtime.autogen import nv_gpu from tinygrad.runtime.support.elf import elf_loader if getenv("IOCTL"): import extra.nv_gpu_driver.nv_ioctl # noqa: F401 # pylint: disable=unused-import def get_error_str(status): return f"{status}: {nv_gpu.nv_status_codes.get(status, 'Unknown error')}" NV_PFAULT_FAULT_TYPE = {dt:name for name,dt in nv_gpu.__dict__.items() if name.startswith("NV_PFAULT_FAULT_TYPE_")} NV_PFAULT_ACCESS_TYPE = {dt:name.split("_")[-1] for name,dt in nv_gpu.__dict__.items() if name.startswith("NV_PFAULT_ACCESS_TYPE_")} def nv_iowr(fd:HWInterface, nr, args): ret = fd.ioctl((3 << 30) | (ctypes.sizeof(args) & 0x1FFF) << 16 | (ord('F') & 0xFF) << 8 | (nr & 0xFF), args) if ret != 0: raise RuntimeError(f"ioctl returned {ret}") def rm_alloc(fd, clss, root, parant, params): made = nv_gpu.NVOS21_PARAMETERS(hRoot=root, hObjectParent=parant, hClass=clss, pAllocParms=ctypes.cast(ctypes.byref(params), ctypes.c_void_p) if params is not None else None) nv_iowr(fd, nv_gpu.NV_ESC_RM_ALLOC, made) if made.status != 0: if made.status == nv_gpu.NV_ERR_NO_MEMORY: raise MemoryError(f"rm_alloc returned {get_error_str(made.status)}") raise RuntimeError(f"rm_alloc returned {get_error_str(made.status)}") return made def rm_control(cmd, sttyp, fd, client, obj, **kwargs): made = nv_gpu.NVOS54_PARAMETERS(hClient=client, hObject=obj, cmd=cmd, paramsSize=ctypes.sizeof(params:=sttyp(**kwargs)), params=ctypes.cast(ctypes.byref(params), ctypes.c_void_p) if params is not None else None) nv_iowr(fd, nv_gpu.NV_ESC_RM_CONTROL, made) if made.status != 0: raise RuntimeError(f"rm_control returned {get_error_str(made.status)}") return params def make_rmctrl_type(): return type("NVRMCTRL", (object,), {name[name.find("_CTRL_CMD_")+10:].lower(): functools.partial(rm_control, dt, sttyp) for name,dt in nv_gpu.__dict__.items() if name.find("_CTRL_CMD_")>=0 and (sttyp:=getattr(nv_gpu, name.replace("_CTRL_CMD_", "_CTRL_")+"_PARAMS", \ getattr(nv_gpu, name+"_PARAMS", getattr(nv_gpu, name.replace("_CTRL_CMD_", "_CTRL_DEBUG_")+"_PARAMETERS", None))))}) rmctrl = make_rmctrl_type() def uvm_ioctl(cmd, sttyp, fd:HWInterface, **kwargs): ret = fd.ioctl(cmd, made:=sttyp(**kwargs)) if ret != 0: raise RuntimeError(f"ioctl(uvm) returned {ret}") if made.rmStatus != 0: raise RuntimeError(f"uvm_ioctl returned {get_error_str(made.rmStatus)}") return made def make_uvm_type(): return type("NVUVM", (object,), {name.replace("UVM_", "").lower(): functools.partial(uvm_ioctl, dt, getattr(nv_gpu, name+"_PARAMS")) for name,dt in nv_gpu.__dict__.items() if name.startswith("UVM_") and nv_gpu.__dict__.get(name+"_PARAMS")}) uvm = make_uvm_type() def make_qmd_struct_type(): fields: list[tuple[str, Union[Type[ctypes.c_uint64], Type[ctypes.c_uint32]], Any]] = [] bits = [(name,dt) for name,dt in nv_gpu.__dict__.items() if name.startswith("NVC6C0_QMDV03_00") and isinstance(dt, tuple)] bits += [(name+f"_{i}",dt(i)) for name,dt in nv_gpu.__dict__.items() for i in range(8) if name.startswith("NVC6C0_QMDV03_00") and callable(dt)] bits = sorted(bits, key=lambda x: x[1][1]) for i,(name, data) in enumerate(bits): if i > 0 and (gap:=(data[1] - bits[i-1][1][0] - 1)) != 0: fields.append((f"_reserved{i}", ctypes.c_uint32, gap)) fields.append((name.replace("NVC6C0_QMDV03_00_", "").lower(), ctypes.c_uint32, data[0]-data[1]+1)) if len(fields) >= 2 and fields[-2][0].endswith('_lower') and fields[-1][0].endswith('_upper') and fields[-1][0][:-6] == fields[-2][0][:-6]: fields = fields[:-2] + [(fields[-1][0][:-6], ctypes.c_uint64, fields[-1][2] + fields[-2][2])] return init_c_struct_t(tuple(fields)) qmd_struct_t = make_qmd_struct_type() assert ctypes.sizeof(qmd_struct_t) == 0x40 * 4 class NVSignal(HCQSignal): def __init__(self, base_addr:int|None=None, **kwargs): super().__init__(base_addr, **kwargs, timestamp_divider=1000, dev_t=NVDevice) class NVCommandQueue(HWQueue[NVSignal, 'NVDevice', 'NVProgram', 'NVArgsState']): def __init__(self): self.active_qmd = None super().__init__() def __del__(self): if self.binded_device is not None: self.binded_device.allocator.free(self.hw_page, self.hw_page.size, BufferSpec(cpu_access=True, nolru=True)) def nvm(self, subchannel, mthd, *args, typ=2): self.q((typ << 28) | (len(args) << 16) | (subchannel << 13) | (mthd >> 2), *args) def setup(self, compute_class=None, copy_class=None, local_mem_window=None, shared_mem_window=None, local_mem=None, local_mem_tpc_bytes=None): if compute_class: self.nvm(1, nv_gpu.NVC6C0_SET_OBJECT, compute_class) if copy_class: self.nvm(4, nv_gpu.NVC6C0_SET_OBJECT, copy_class) if local_mem_window: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_WINDOW_A, *data64(local_mem_window)) if shared_mem_window: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_SHARED_MEMORY_WINDOW_A, *data64(shared_mem_window)) if local_mem: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_A, *data64(local_mem)) if local_mem_tpc_bytes: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_NON_THROTTLED_A, *data64(local_mem_tpc_bytes), 0xff) return self def wait(self, signal:NVSignal, value:sint=0): self.nvm(0, nv_gpu.NVC56F_SEM_ADDR_LO, *data64_le(signal.value_addr), *data64_le(value), (3 << 0) | (1 << 24)) # ACQUIRE | PAYLOAD_SIZE_64BIT self.active_qmd = None return self def timestamp(self, signal:NVSignal): return self.signal(signal, 0) def bind(self, dev:NVDevice): self.binded_device = dev self.hw_page = dev.allocator.alloc(len(self._q) * 4, BufferSpec(cpu_access=True, nolru=True)) hw_view = to_mv(self.hw_page.va_addr, self.hw_page.size).cast("I") for i, value in enumerate(self._q): hw_view[i] = value # From now on, the queue is on the device for faster submission. self._q = hw_view def _submit_to_gpfifo(self, dev:NVDevice, gpfifo:GPFifo): if dev == self.binded_device: cmdq_addr = self.hw_page.va_addr else: cmdq_addr = dev.cmdq_allocator.alloc(len(self._q) * 4) cmdq_wptr = (cmdq_addr - dev.cmdq_page.va_addr) // 4 dev.cmdq[cmdq_wptr : cmdq_wptr + len(self._q)] = array.array('I', self._q) gpfifo.ring[gpfifo.put_value % gpfifo.entries_count] = (cmdq_addr//4 << 2) | (len(self._q) << 42) | (1 << 41) gpfifo.controls.GPPut = (gpfifo.put_value + 1) % gpfifo.entries_count if CPUProgram.atomic_lib is not None: CPUProgram.atomic_lib.atomic_thread_fence(__ATOMIC_SEQ_CST:=5) dev.gpu_mmio[0x90 // 4] = gpfifo.token gpfifo.put_value += 1 class NVComputeQueue(NVCommandQueue): def memory_barrier(self): self.nvm(1, nv_gpu.NVC6C0_INVALIDATE_SHADER_CACHES_NO_WFI, (1 << 12) | (1 << 4) | (1 << 0)) self.active_qmd = None return self def exec(self, prg:NVProgram, args_state:NVArgsState, global_size:tuple[sint, ...], local_size:tuple[sint, ...]): self.bind_args_state(args_state) ctypes.memmove(qmd_addr:=(args_state.ptr + round_up(prg.constbufs[0][1], 1 << 8)), ctypes.addressof(prg.qmd), 0x40 * 4) assert qmd_addr < (1 << 40), f"large qmd addr {qmd_addr:x}" qmd = qmd_struct_t.from_address(qmd_addr) # Save qmd for later update self.bind_sints_to_ptr(*global_size, ptr=qmd_addr + nv_gpu.NVC6C0_QMDV03_00_CTA_RASTER_WIDTH[1] // 8, fmt='I') self.bind_sints_to_ptr(*local_size, ptr=qmd_addr + nv_gpu.NVC6C0_QMDV03_00_CTA_THREAD_DIMENSION0[1] // 8, fmt='H') self.bind_sints_to_ptr(*local_size, *global_size, ptr=args_state.ptr, fmt='I') qmd.constant_buffer_addr_upper_0, qmd.constant_buffer_addr_lower_0 = data64(args_state.ptr) if self.active_qmd is None: self.nvm(1, nv_gpu.NVC6C0_SEND_PCAS_A, qmd_addr >> 8) self.nvm(1, nv_gpu.NVC6C0_SEND_SIGNALING_PCAS2_B, 9) else: self.active_qmd.dependent_qmd0_pointer = qmd_addr >> 8 self.active_qmd.dependent_qmd0_action = 1 self.active_qmd.dependent_qmd0_prefetch = 1 self.active_qmd.dependent_qmd0_enable = 1 self.active_qmd = qmd return self def signal(self, signal:NVSignal, value:sint=0): if self.active_qmd is not None: for i in range(2): if getattr(self.active_qmd, f'release{i}_enable') == 0: setattr(self.active_qmd, f'release{i}_enable', 1) self.bind_sints(signal.value_addr, struct=self.active_qmd, start_field=f'release{i}_address', fmt='Q', mask=0xfffffffff) self.bind_sints(value, struct=self.active_qmd, start_field=f'release{i}_payload', fmt='Q') return self self.nvm(0, nv_gpu.NVC56F_SEM_ADDR_LO, *data64_le(signal.value_addr), *data64_le(value), (1 << 0) | (1 << 20) | (1 << 24) | (1 << 25)) # RELEASE | RELEASE_WFI | PAYLOAD_SIZE_64BIT | RELEASE_TIMESTAMP self.nvm(0, nv_gpu.NVC56F_NON_STALL_INTERRUPT, 0x0) self.active_qmd = None return self def _submit(self, dev:NVDevice): self._submit_to_gpfifo(dev, dev.compute_gpfifo) class NVCopyQueue(NVCommandQueue): def copy(self, dest:sint, src:sint, copy_size:int): self.nvm(4, nv_gpu.NVC6B5_OFFSET_IN_UPPER, *data64(src), *data64(dest)) self.nvm(4, nv_gpu.NVC6B5_LINE_LENGTH_IN, copy_size) self.nvm(4, nv_gpu.NVC6B5_LAUNCH_DMA, 0x182) # TRANSFER_TYPE_NON_PIPELINED | DST_MEMORY_LAYOUT_PITCH | SRC_MEMORY_LAYOUT_PITCH return self def signal(self, signal:NVSignal, value:sint=0): self.nvm(4, nv_gpu.NVC6B5_SET_SEMAPHORE_A, *data64(signal.value_addr), value) self.nvm(4, nv_gpu.NVC6B5_LAUNCH_DMA, 0x14) return self def _submit(self, dev:NVDevice): self._submit_to_gpfifo(dev, dev.dma_gpfifo) class NVArgsState(CLikeArgsState): def __init__(self, ptr:int, prg:NVProgram, bufs:tuple[HCQBuffer, ...], vals:tuple[int, ...]=()): if MOCKGPU: prg.constbuffer_0[80:82] = [len(bufs), len(vals)] super().__init__(ptr, prg, bufs, vals=vals, prefix=prg.constbuffer_0) class NVProgram(HCQProgram): def __init__(self, dev:NVDevice, name:str, lib:bytes): self.dev, self.name, self.lib = dev, name, lib if MOCKGPU: image, sections, relocs, cbuf0_size = memoryview(bytearray(lib) + b'\x00' * (4 - len(lib)%4)).cast("I"), [], [], 0x160 # type: ignore else: image, sections, relocs = elf_loader(self.lib, force_section_align=128) # NOTE: Ensure at least 4KB of space after the program to mitigate prefetch memory faults. self.lib_gpu = self.dev.allocator.alloc(round_up(image.nbytes, 0x1000) + 0x1000, BufferSpec(cpu_access=True)) self.prog_addr, self.prog_sz, self.regs_usage, self.shmem_usage, self.lcmem_usage = self.lib_gpu.va_addr, image.nbytes, 0, 0x400, 0 self.constbufs: dict[int, tuple[int, int]] = {0: (0, 0x160)} # dict[constbuf index, tuple[va_addr, size]] for sh in sections: if sh.name == f".nv.shared.{self.name}": self.shmem_usage = round_up(0x400 + sh.header.sh_size, 128) if sh.name == f".text.{self.name}": self.prog_addr, self.prog_sz, self.regs_usage = self.lib_gpu.va_addr+sh.header.sh_addr, sh.header.sh_size, max(sh.header.sh_info>>24, 16) elif m:=re.match(r'\.nv\.constant(\d+)', sh.name): self.constbufs[int(m.group(1))] = (self.lib_gpu.va_addr+sh.header.sh_addr, sh.header.sh_size) elif sh.name.startswith(".nv.info"): for typ, param, data in self._parse_elf_info(sh): if sh.name == f".nv.info.{name}" and param == 0xa: cbuf0_size = struct.unpack_from("IH", data)[1] # EIATTR_PARAM_CBANK elif sh.name == ".nv.info" and param == 0x12: self.lcmem_usage = struct.unpack_from("II", data)[1] + 0x240 # EIATTR_MIN_STACK_SIZE # Ensure device has enough local memory to run the program self.dev._ensure_has_local_memory(self.lcmem_usage) # Apply relocs for apply_image_offset, rel_sym_offset, typ, _ in relocs: # These types are CUDA-specific, applying them here if typ == 2: image[apply_image_offset:apply_image_offset+8] = struct.pack('> 32) else: raise RuntimeError(f"unknown NV reloc {typ}") ctypes.memmove(self.lib_gpu.va_addr, mv_address(image), image.nbytes) self.constbuffer_0 = [0] * (cbuf0_size // 4) self.constbuffer_0[6:12] = [*data64_le(self.dev.shared_mem_window), *data64_le(self.dev.local_mem_window), *data64_le(0xfffdc0)] smem_cfg = min(shmem_conf * 1024 for shmem_conf in [32, 64, 100] if shmem_conf * 1024 >= self.shmem_usage) // 4096 + 1 self.qmd: ctypes.Structure = \ qmd_struct_t(qmd_group_id=0x3f, sm_global_caching_enable=1, invalidate_texture_header_cache=1, invalidate_texture_sampler_cache=1, invalidate_texture_data_cache=1, invalidate_shader_data_cache=1, api_visible_call_limit=1, sampler_index=1, cwd_membar_type=nv_gpu.NVC6C0_QMDV03_00_CWD_MEMBAR_TYPE_L1_SYSMEMBAR, qmd_major_version=3, constant_buffer_invalidate_0=1, shared_memory_size=self.shmem_usage, min_sm_config_shared_mem_size=smem_cfg, target_sm_config_shared_mem_size=smem_cfg, max_sm_config_shared_mem_size=0x1a, register_count_v=self.regs_usage, program_address=self.prog_addr, sass_version=0x89, barrier_count=1, shader_local_memory_high_size=self.dev.slm_per_thread, program_prefetch_size=self.prog_sz>>8, program_prefetch_addr_lower_shifted=self.prog_addr>>8, program_prefetch_addr_upper_shifted=self.prog_addr>>40) for i,(addr,sz) in self.constbufs.items(): self.qmd.__setattr__(f'constant_buffer_addr_upper_{i}', (addr) >> 32) self.qmd.__setattr__(f'constant_buffer_addr_lower_{i}', (addr) & 0xffffffff) self.qmd.__setattr__(f'constant_buffer_size_shifted4_{i}', sz) self.qmd.__setattr__(f'constant_buffer_valid_{i}', 1) # Registers allocation granularity per warp is 256, warp allocation granularity is 4. Register file size is 65536. self.max_threads = ((65536 // round_up(max(1, self.regs_usage) * 32, 256)) // 4) * 4 * 32 # NV's kernargs is constbuffer, then arguments to the kernel follows. Kernargs also appends QMD at the end of the kernel. super().__init__(NVArgsState, self.dev, self.name, kernargs_alloc_size=round_up(self.constbufs[0][1], 1 << 8) + (8 << 8)) def _parse_elf_info(self, sh, start_off=0): while start_off < sh.header.sh_size: typ, param, sz = struct.unpack_from("BBH", sh.content, start_off) yield typ, param, sh.content[start_off+4:start_off+sz+4] if typ == 0x4 else sz start_off += (sz if typ == 0x4 else 0) + 4 def __del__(self): if hasattr(self, 'lib_gpu'): self.dev.allocator.free(self.lib_gpu, self.lib_gpu.size, BufferSpec(cpu_access=True)) def __call__(self, *bufs, global_size:tuple[int,int,int]=(1,1,1), local_size:tuple[int,int,int]=(1,1,1), vals:tuple[int, ...]=(), wait=False): if prod(local_size) > 1024 or self.max_threads < prod(local_size) or self.lcmem_usage > cast(NVDevice, self.dev).slm_per_thread: raise RuntimeError(f"Too many resources requested for launch, {prod(local_size)=}, {self.max_threads=}") if any(cur > mx for cur,mx in zip(global_size, [2147483647, 65535, 65535])) or any(cur > mx for cur,mx in zip(local_size, [1024, 1024, 64])): raise RuntimeError(f"Invalid global/local dims {global_size=}, {local_size=}") return super().__call__(*bufs, global_size=global_size, local_size=local_size, vals=vals, wait=wait) class NVAllocator(HCQAllocator['NVDevice']): def _alloc(self, size:int, options:BufferSpec) -> HCQBuffer: if options.host: return self.dev._gpu_alloc(size, host=True, tag="user host memory") return self.dev._gpu_alloc(size, cpu_access=options.cpu_access, tag=f"user memory ({options})") def _free(self, opaque:HCQBuffer, options:BufferSpec): self.dev.synchronize() self.dev._gpu_free(opaque) def map(self, buf:HCQBuffer): self.dev._gpu_map(buf._base if buf._base is not None else buf) @dataclass class GPFifo: ring: memoryview controls: nv_gpu.AmpereAControlGPFifo entries_count: int token: int put_value: int = 0 MAP_FIXED, MAP_NORESERVE = 0x10, 0x400 class NVDevice(HCQCompiled[NVSignal]): devices: ClassVar[list[HCQCompiled]] = [] signal_pages: ClassVar[list[Any]] = [] signal_pool: ClassVar[list[int]] = [] root = None fd_ctl: HWInterface fd_uvm: HWInterface gpus_info: Union[list, ctypes.Array] = [] # TODO: Need a proper allocator for va addresses # 0x1000000000 - 0x2000000000, reserved for system/cpu mappings # VA space is 48bits. low_uvm_vaddr_allocator: BumpAllocator = BumpAllocator(size=0x1000000000, base=0x8000000000 if OSX else 0x1000000000, wrap=False) uvm_vaddr_allocator: BumpAllocator = BumpAllocator(size=(1 << 48) - 1, base=low_uvm_vaddr_allocator.base + low_uvm_vaddr_allocator.size, wrap=False) host_object_enumerator: int = 0x1000 def _new_gpu_fd(self): fd_dev = HWInterface(f"/dev/nvidia{NVDevice.gpus_info[self.device_id].minor_number}", os.O_RDWR | os.O_CLOEXEC) nv_iowr(fd_dev, nv_gpu.NV_ESC_REGISTER_FD, nv_gpu.nv_ioctl_register_fd_t(ctl_fd=self.fd_ctl.fd)) return fd_dev def _gpu_map_to_cpu(self, memory_handle, size, target=None, flags=0, system=False): fd_dev = self._new_gpu_fd() if not system else HWInterface("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC) made = nv_gpu.nv_ioctl_nvos33_parameters_with_fd(fd=fd_dev.fd, params=nv_gpu.NVOS33_PARAMETERS(hClient=self.root, hDevice=self.nvdevice, hMemory=memory_handle, length=size, flags=flags)) nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_MAP_MEMORY, made) if made.params.status != 0: raise RuntimeError(f"_gpu_map_to_cpu returned {get_error_str(made.params.status)}") return fd_dev.mmap(target, size, mmap.PROT_READ|mmap.PROT_WRITE, mmap.MAP_SHARED | (MAP_FIXED if target is not None else 0), 0) def _gpu_alloc(self, size:int, host=False, uncached=False, cpu_access=False, contiguous=False, map_flags=0, tag="") -> HCQBuffer: # Uncached memory is "system". Use huge pages only for gpu memory. page_size = (4 << (12 if OSX else 10)) if uncached or host else ((2 << 20) if size >= (8 << 20) else (4 << (12 if OSX else 10))) size = round_up(size, page_size) va_addr = self._alloc_gpu_vaddr(size, alignment=page_size, force_low=cpu_access) if host: va_addr = HWInterface.anon_mmap(va_addr, size, mmap.PROT_READ | mmap.PROT_WRITE, MAP_FIXED | mmap.MAP_SHARED | mmap.MAP_ANONYMOUS, 0) flags = (nv_gpu.NVOS02_FLAGS_PHYSICALITY_NONCONTIGUOUS << 4) | (nv_gpu.NVOS02_FLAGS_COHERENCY_CACHED << 12) \ | (nv_gpu.NVOS02_FLAGS_MAPPING_NO_MAP << 30) NVDevice.host_object_enumerator += 1 made = nv_gpu.nv_ioctl_nvos02_parameters_with_fd(params=nv_gpu.NVOS02_PARAMETERS(hRoot=self.root, hObjectParent=self.nvdevice, flags=flags, hObjectNew=NVDevice.host_object_enumerator, hClass=nv_gpu.NV01_MEMORY_SYSTEM_OS_DESCRIPTOR, pMemory=va_addr, limit=size-1), fd=-1) nv_iowr(self.fd_dev, nv_gpu.NV_ESC_RM_ALLOC_MEMORY, made) if made.params.status != 0: raise RuntimeError(f"host alloc returned {get_error_str(made.params.status)}") mem_handle = made.params.hObjectNew else: attr = ((nv_gpu.NVOS32_ATTR_PHYSICALITY_CONTIGUOUS if contiguous else nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS) << 27) \ | (nv_gpu.NVOS32_ATTR_PAGE_SIZE_HUGE if page_size > 0x1000 else 0) << 23 | ((nv_gpu.NVOS32_ATTR_LOCATION_PCI if uncached else 0) << 25) attr2 = ((nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_NO if uncached else nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_YES) << 2) \ | ((nv_gpu.NVOS32_ATTR2_PAGE_SIZE_HUGE_2MB if page_size > 0x1000 else 0) << 20) | nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC fl = nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED | nv_gpu.NVOS32_ALLOC_FLAGS_ALIGNMENT_FORCE \ | nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | (nv_gpu.NVOS32_ALLOC_FLAGS_PERSISTENT_VIDMEM if not uncached else 0) alloc_func = nv_gpu.NV1_MEMORY_SYSTEM if uncached else nv_gpu.NV1_MEMORY_USER alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, alignment=page_size, offset=0, limit=size-1, format=6, size=size, type=nv_gpu.NVOS32_TYPE_NOTIFIER if uncached else nv_gpu.NVOS32_TYPE_IMAGE, attr=attr, attr2=attr2, flags=fl) mem_handle = rm_alloc(self.fd_ctl, alloc_func, self.root, self.nvdevice, alloc_params).hObjectNew if cpu_access: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags, system=uncached) return self._gpu_uvm_map(va_addr, size, mem_handle, has_cpu_mapping=cpu_access or host, tag=tag) def _gpu_free(self, mem:HCQBuffer): if mem.meta.hMemory > NVDevice.host_object_enumerator: # not a host object, clear phys mem. made = nv_gpu.NVOS00_PARAMETERS(hRoot=self.root, hObjectParent=self.nvdevice, hObjectOld=mem.meta.hMemory) nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_FREE, made) if made.status != 0: raise RuntimeError(f"_gpu_free returned {get_error_str(made.status)}") self._debug_mappings.pop((cast(int, mem.va_addr), mem.size)) uvm.free(self.fd_uvm, base=cast(int, mem.va_addr), length=mem.size) if mem.meta.has_cpu_mapping: HWInterface.munmap(cast(int, mem.va_addr), mem.size) def _gpu_uvm_map(self, va_base, size, mem_handle, create_range=True, has_cpu_mapping=False, tag="") -> HCQBuffer: if create_range: uvm.create_external_range(self.fd_uvm, base=va_base, length=size) attrs = (nv_gpu.struct_c__SA_UvmGpuMappingAttributes*256)(nv_gpu.struct_c__SA_UvmGpuMappingAttributes(gpuUuid=self.gpu_uuid, gpuMappingType=1)) # NOTE: va_addr is set to make rawbufs compatible with HCQBuffer protocol. self._debug_mappings[(va_base, size)] = tag return HCQBuffer(va_base, size, meta=uvm.map_external_allocation(self.fd_uvm, base=va_base, length=size, rmCtrlFd=self.fd_ctl.fd, hClient=self.root, hMemory=mem_handle, gpuAttributesCount=1, perGpuAttributes=attrs, mapped_gpu_ids=[self.gpu_uuid], has_cpu_mapping=has_cpu_mapping)) def _gpu_map(self, mem:HCQBuffer): if self.gpu_uuid in mem.meta.mapped_gpu_ids: return mem.meta.mapped_gpu_ids.append(self.gpu_uuid) self._gpu_uvm_map(mem.va_addr, mem.size, mem.meta.hMemory, create_range=False, tag="p2p mem") def _alloc_gpu_vaddr(self, size, alignment=(4 << 10), force_low=False): return NVDevice.low_uvm_vaddr_allocator.alloc(size, alignment) if force_low else NVDevice.uvm_vaddr_allocator.alloc(size, alignment) def _setup_nvclasses(self): classlist = memoryview(bytearray(100 * 4)).cast('I') clsinfo = rmctrl.gpu_get_classlist(self.fd_ctl, self.root, self.nvdevice, numClasses=100, classList=mv_address(classlist)) self.nvclasses = {classlist[i] for i in range(clsinfo.numClasses)} self.compute_class = next(clss for clss in [nv_gpu.ADA_COMPUTE_A, nv_gpu.AMPERE_COMPUTE_B] if clss in self.nvclasses) def __init__(self, device:str=""): if NVDevice.root is None: NVDevice.fd_ctl = HWInterface("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC) NVDevice.fd_uvm = HWInterface("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC) self.fd_uvm_2 = HWInterface("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC) NVDevice.root = rm_alloc(self.fd_ctl, nv_gpu.NV01_ROOT_CLIENT, 0, 0, None).hObjectNew uvm.initialize(self.fd_uvm) with contextlib.suppress(RuntimeError): uvm.mm_initialize(self.fd_uvm_2, uvmFd=self.fd_uvm.fd) # this error is okay, CUDA hits it too nv_iowr(NVDevice.fd_ctl, nv_gpu.NV_ESC_CARD_INFO, gpus_info:=(nv_gpu.nv_ioctl_card_info_t*64)()) visible_devices = [int(x) for x in (getenv('VISIBLE_DEVICES', getenv('CUDA_VISIBLE_DEVICES', ''))).split(',') if x.strip()] NVDevice.gpus_info = [gpus_info[x] for x in visible_devices] if visible_devices else gpus_info self.device_id = int(device.split(":")[1]) if ":" in device else 0 if self.device_id >= len(NVDevice.gpus_info) or not NVDevice.gpus_info[self.device_id].valid: raise RuntimeError(f"No device found for {device}. Requesting more devices than the system has?") self.gpu_info = rmctrl.gpu_get_id_info_v2(self.fd_ctl, self.root, self.root, gpuId=NVDevice.gpus_info[self.device_id].gpu_id) self.gpu_minor = NVDevice.gpus_info[self.device_id].minor_number self.fd_dev = self._new_gpu_fd() device_params = nv_gpu.NV0080_ALLOC_PARAMETERS(deviceId=self.gpu_info.deviceInstance, hClientShare=self.root, vaMode=nv_gpu.NV_DEVICE_ALLOCATION_VAMODE_MULTIPLE_VASPACES) self.nvdevice = rm_alloc(self.fd_ctl, nv_gpu.NV01_DEVICE_0, self.root, self.root, device_params).hObjectNew self.subdevice = rm_alloc(self.fd_ctl, nv_gpu.NV20_SUBDEVICE_0, self.root, self.nvdevice, None).hObjectNew self.usermode = rm_alloc(self.fd_ctl, nv_gpu.TURING_USERMODE_A, self.root, self.subdevice, None).hObjectNew self.gpu_mmio = to_mv(self._gpu_map_to_cpu(self.usermode, mmio_sz:=0x10000, flags=2), mmio_sz).cast("I") self._setup_nvclasses() self._debug_mappings: dict[tuple[int, int], str] = dict() rmctrl.perf_boost(self.fd_ctl, self.root, self.subdevice, duration=0xffffffff, flags=((nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_YES << 4) | \ (nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_PRIORITY_HIGH << 6) | (nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CMD_BOOST_TO_MAX << 0))) vaspace_params = nv_gpu.NV_VASPACE_ALLOCATION_PARAMETERS(vaBase=0x1000, vaSize=0x1fffffb000000, flags=nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_ENABLE_PAGE_FAULTING | nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_IS_EXTERNALLY_OWNED) vaspace = rm_alloc(self.fd_ctl, nv_gpu.FERMI_VASPACE_A, self.root, self.nvdevice, vaspace_params).hObjectNew raw_uuid = rmctrl.gpu_get_gid_info(self.fd_ctl, self.root, self.subdevice, flags=nv_gpu.NV2080_GPU_CMD_GPU_GET_GID_FLAGS_FORMAT_BINARY, length=16) self.gpu_uuid = nv_gpu.struct_nv_uuid(uuid=(ctypes.c_ubyte*16)(*[raw_uuid.data[i] for i in range(16)])) uvm.register_gpu(self.fd_uvm, rmCtrlFd=-1, gpu_uuid=self.gpu_uuid) uvm.register_gpu_vaspace(self.fd_uvm, gpuUuid=self.gpu_uuid, rmCtrlFd=self.fd_ctl.fd, hClient=self.root, hVaSpace=vaspace) for dev in cast(list[NVDevice], self.devices): try: uvm.enable_peer_access(self.fd_uvm, gpuUuidA=self.gpu_uuid, gpuUuidB=dev.gpu_uuid) except RuntimeError as e: raise RuntimeError(str(e) + f". Make sure GPUs #{self.gpu_minor} & #{dev.gpu_minor} have P2P enabled between.") from e channel_params = nv_gpu.NV_CHANNEL_GROUP_ALLOCATION_PARAMETERS(engineType=nv_gpu.NV2080_ENGINE_TYPE_GRAPHICS) channel_group = rm_alloc(self.fd_ctl, nv_gpu.KEPLER_CHANNEL_GROUP_A, self.root, self.nvdevice, channel_params).hObjectNew gpfifo_area = self._gpu_alloc(0x200000, contiguous=True, cpu_access=True, map_flags=0x10d0000, tag="gpfifo") ctxshare_params = nv_gpu.NV_CTXSHARE_ALLOCATION_PARAMETERS(hVASpace=vaspace, flags=nv_gpu.NV_CTXSHARE_ALLOCATION_FLAGS_SUBCONTEXT_ASYNC) ctxshare = rm_alloc(self.fd_ctl, nv_gpu.FERMI_CONTEXT_SHARE_A, self.root, channel_group, ctxshare_params).hObjectNew self.compute_gpfifo = self._new_gpu_fifo(gpfifo_area, ctxshare, channel_group, offset=0, entries=0x10000, enable_debug=True) self.dma_gpfifo = self._new_gpu_fifo(gpfifo_area, ctxshare, channel_group, offset=0x100000, entries=0x10000) rmctrl.gpfifo_schedule(self.fd_ctl, self.root, channel_group, bEnable=1) self.cmdq_page:HCQBuffer = self._gpu_alloc(0x200000, cpu_access=True, tag="cmdq") self.cmdq_allocator = BumpAllocator(size=self.cmdq_page.size, base=cast(int, self.cmdq_page.va_addr), wrap=True) self.cmdq: memoryview = to_mv(cast(int, self.cmdq_page.va_addr), 0x200000).cast("I") self.num_gpcs, self.num_tpc_per_gpc, self.num_sm_per_tpc, self.max_warps_per_sm, self.sm_version = self._query_gpu_info('num_gpcs', 'num_tpc_per_gpc', 'num_sm_per_tpc', 'max_warps_per_sm', 'sm_version') self.arch: str = f"sm_{(self.sm_version>>8)&0xff}{(val>>4) if (val:=self.sm_version&0xff) > 0xf else val}" compiler_t = (PTXCompiler if PTX else CUDACompiler) if MOCKGPU else (NVPTXCompiler if PTX else NVCompiler) super().__init__(device, NVAllocator(self), PTXRenderer(self.arch, device="NV") if PTX else NVRenderer(self.arch), compiler_t(self.arch), functools.partial(NVProgram, self), NVSignal, NVComputeQueue, NVCopyQueue) self._setup_gpfifos() def _new_gpu_fifo(self, gpfifo_area, ctxshare, channel_group, offset=0, entries=0x400, enable_debug=False) -> GPFifo: notifier = self._gpu_alloc(48 << 20, uncached=True) params = nv_gpu.NV_CHANNELGPFIFO_ALLOCATION_PARAMETERS(hObjectError=notifier.meta.hMemory, hObjectBuffer=gpfifo_area.meta.hMemory, gpFifoOffset=gpfifo_area.va_addr+offset, gpFifoEntries=entries, hContextShare=ctxshare, hUserdMemory=(ctypes.c_uint32*8)(gpfifo_area.meta.hMemory), userdOffset=(ctypes.c_uint64*8)(entries*8+offset)) gpfifo = rm_alloc(self.fd_ctl, nv_gpu.AMPERE_CHANNEL_GPFIFO_A, self.root, channel_group, params).hObjectNew comp = rm_alloc(self.fd_ctl, self.compute_class, self.root, gpfifo, None).hObjectNew rm_alloc(self.fd_ctl, nv_gpu.AMPERE_DMA_COPY_B, self.root, gpfifo, None) if enable_debug: self.debug_compute_obj, self.debug_channel = comp, gpfifo debugger_params = nv_gpu.NV83DE_ALLOC_PARAMETERS(hAppClient=self.root, hClass3dObject=self.debug_compute_obj) self.debugger = rm_alloc(self.fd_ctl, nv_gpu.GT200_DEBUGGER, self.root, self.nvdevice, debugger_params).hObjectNew ws_token_params = rmctrl.gpfifo_get_work_submit_token(self.fd_ctl, self.root, gpfifo, workSubmitToken=-1) assert ws_token_params.workSubmitToken != -1 channel_base = self._alloc_gpu_vaddr(0x4000000, force_low=True) uvm.register_channel(self.fd_uvm, gpuUuid=self.gpu_uuid, rmCtrlFd=self.fd_ctl.fd, hClient=self.root, hChannel=gpfifo, base=channel_base, length=0x4000000) return GPFifo(ring=to_mv(gpfifo_area.va_addr + offset, entries * 8).cast("Q"), entries_count=entries, token=ws_token_params.workSubmitToken, controls=nv_gpu.AmpereAControlGPFifo.from_address(gpfifo_area.va_addr + offset + entries * 8)) def _query_gpu_info(self, *reqs): nvrs = [getattr(nv_gpu,'NV2080_CTRL_GR_INFO_INDEX_'+r.upper(), getattr(nv_gpu,'NV2080_CTRL_GR_INFO_INDEX_LITTER_'+r.upper(),None)) for r in reqs] infos = (nv_gpu.NV2080_CTRL_GR_INFO*len(nvrs))(*[nv_gpu.NV2080_CTRL_GR_INFO(index=nvr) for nvr in nvrs]) rmctrl.gr_get_info(self.fd_ctl, self.root, self.subdevice, grInfoListSize=len(infos), grInfoList=ctypes.addressof(infos)) return [x.data for x in infos] def _setup_gpfifos(self): # Set windows addresses to not collide with other allocated buffers. self.shared_mem_window, self.local_mem_window, self.slm_per_thread, self.shader_local_mem = 0xfe000000, 0xff000000, 0, None NVComputeQueue().setup(compute_class=self.compute_class, local_mem_window=self.local_mem_window, shared_mem_window=self.shared_mem_window) \ .signal(self.timeline_signal, self.timeline_value).submit(self) cast(NVCopyQueue, NVCopyQueue().wait(self.timeline_signal, self.timeline_value)) \ .setup(copy_class=nv_gpu.AMPERE_DMA_COPY_B) \ .signal(self.timeline_signal, self.timeline_value + 1).submit(self) self.timeline_value += 2 def _ensure_has_local_memory(self, required): if self.slm_per_thread >= required or ((maxlm:=getenv("NV_MAX_LOCAL_MEMORY_PER_THREAD")) > 0 and required >= maxlm): return self.slm_per_thread, old_slm_per_thread = round_up(required, 32), self.slm_per_thread bytes_per_tpc = round_up(round_up(self.slm_per_thread * 32, 0x200) * self.max_warps_per_sm * self.num_sm_per_tpc, 0x8000) self.shader_local_mem, ok = self._realloc(self.shader_local_mem, round_up(bytes_per_tpc*self.num_tpc_per_gpc*self.num_gpcs, 0x20000)) # Realloc failed, restore the old value. if not ok: self.slm_per_thread = old_slm_per_thread cast(NVComputeQueue, NVComputeQueue().wait(self.timeline_signal, self.timeline_value - 1)) \ .setup(local_mem=self.shader_local_mem.va_addr, local_mem_tpc_bytes=bytes_per_tpc) \ .signal(self.timeline_signal, self.next_timeline()).submit(self) def invalidate_caches(self): rmctrl.fb_flush_gpu_cache(self.fd_ctl, self.root, self.subdevice, flags=((nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_WRITE_BACK_YES << 2) | (nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_INVALIDATE_YES << 3) | (nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_FLUSH_MODE_FULL_CACHE << 4))) def on_device_hang(self): # Prepare fault report. # TODO: Restore the GPU using NV83DE_CTRL_CMD_CLEAR_ALL_SM_ERROR_STATES if needed. report = [] sm_errors = rmctrl.debug_read_all_sm_error_states(self.fd_ctl, self.root, self.debugger, hTargetChannel=self.debug_channel, numSMsToRead=100) if sm_errors.mmuFault.valid: mmu_info = rmctrl.debug_read_mmu_fault_info(self.fd_ctl, self.root, self.debugger) for i in range(mmu_info.count): pfinfo = mmu_info.mmuFaultInfoList[i] report += [f"MMU fault: 0x{pfinfo.faultAddress:X} | {NV_PFAULT_FAULT_TYPE[pfinfo.faultType]} | {NV_PFAULT_ACCESS_TYPE[pfinfo.accessType]}"] if DEBUG >= 5: report += ["GPU mappings:\n"+"\n".join(f"\t0x{x:X} - 0x{x+y-1:X} | {self._debug_mappings[(x,y)]}" for x,y in sorted(self._debug_mappings))] else: for i, e in enumerate(sm_errors.smErrorStateArray): if e.hwwGlobalEsr or e.hwwWarpEsr: report += [f"SM {i} fault: esr={e.hwwGlobalEsr} warp_esr={e.hwwWarpEsr} warp_pc={e.hwwWarpEsrPc64}"] raise RuntimeError("\n".join(report))