import numpy as np import sympy from laika.constants import EARTH_ROTATION_RATE, SPEED_OF_LIGHT from laika.helpers import ConstellationId def calc_pos_fix_gauss_newton(measurements, posfix_functions, x0=None, signal='C1C', min_measurements=6): ''' Calculates gps fix using gauss newton method To solve the problem a minimal of 4 measurements are required. If Glonass is included 5 are required to solve for the additional free variable. returns: 0 -> list with positions ''' if x0 is None: x0 = [0, 0, 0, 0, 0] n = len(measurements) if n < min_measurements: return [], [] Fx_pos = pr_residual(measurements, posfix_functions, signal=signal) x = gauss_newton(Fx_pos, x0) residual, _ = Fx_pos(x, weight=1.0) return x.tolist(), residual.tolist() def pr_residual(measurements, posfix_functions, signal='C1C'): def Fx_pos(inp, weight=None): vals, gradients = [], [] for meas in measurements: pr = meas.observables[signal] pr += meas.sat_clock_err * SPEED_OF_LIGHT w = (1 / meas.observables_std[signal]) if weight is None else weight val, *gradient = posfix_functions[meas.constellation_id](*inp, pr, *meas.sat_pos, w) vals.append(val) gradients.append(gradient) return np.asarray(vals), np.asarray(gradients) return Fx_pos def get_prr_sympy_func(): # implemting this without sympy.Matrix gives a 2x speedup at generation # knowns, receiver position, satellite position, satellite velocity ep_x, ep_y, ep_z = sympy.Symbol('ep_x'), sympy.Symbol('ep_y'), sympy.Symbol('ep_z') est_pos = np.array([ep_x, ep_y, ep_z]) sp_x, sp_y, sp_z = sympy.Symbol('sp_x'), sympy.Symbol('sp_y'), sympy.Symbol('sp_z') sat_pos = np.array([sp_x, sp_y, sp_z]) sv_x, sv_y, sv_z = sympy.Symbol('sv_x'), sympy.Symbol('sv_y'), sympy.Symbol('sv_z') sat_vel = np.array([sv_x, sv_y, sv_z]) observables = sympy.Symbol('observables') weight = sympy.Symbol('weight') # unknown, receiver velocity v_x, v_y, v_z = sympy.Symbol('v_x'), sympy.Symbol('v_y'), sympy.Symbol('v_z') vel = np.array([v_x, v_y, v_z]) vel_o = sympy.Symbol('vel_o') loss = sat_pos - est_pos loss /= sympy.sqrt(loss.dot(loss)) nv = loss.dot(sat_vel - vel) ov = (observables - vel_o) res = (nv - ov)*weight res = [res] + [sympy.diff(res, v) for v in [v_x, v_y, v_z, vel_o]] return sympy.lambdify([ ep_x, ep_y, ep_z, sp_x, sp_y, sp_z, sv_x, sv_y, sv_z, observables, weight, v_x, v_y, v_z, vel_o ], res, modules=["numpy"]) def prr_residual(measurements, est_pos, no_weight=False, signal='D1C'): loss_func = get_prr_sympy_func() def Fx_vel(vel, no_weight=no_weight): vals, gradients = [], [] for meas in measurements: if signal not in meas.observables or not np.isfinite(meas.observables[signal]): continue sat_pos = meas.sat_pos_final if meas.corrected else meas.sat_pos weight = 1 if no_weight or meas.observables[signal] == 0 else (1 / meas.observables[signal]) val, *gradient = loss_func(est_pos[0], est_pos[1], est_pos[2], sat_pos[0], sat_pos[1], sat_pos[2], meas.sat_vel[0], meas.sat_vel[1], meas.sat_vel[2], meas.observables[signal], weight, vel[0], vel[1], vel[2], vel[3]) vals.append(val) gradients.append(gradient) return np.asarray(vals), np.asarray(gradients) return Fx_vel def gauss_newton(fun, b, xtol=1e-8, max_n=25): for _ in range(max_n): # Compute function and jacobian on current estimate r, J = fun(b) # Update estimate delta = np.linalg.pinv(J) @ r b -= delta # Check step size for stopping condition if np.linalg.norm(delta) < xtol: break return b def get_posfix_sympy_fun(constellation): # Unknowns x, y, z = sympy.Symbol('x'), sympy.Symbol('y'), sympy.Symbol('z') bc = sympy.Symbol('bc') bg = sympy.Symbol('bg') var = [x, y, z, bc, bg] # Knowns pr = sympy.Symbol('pr') sat_x, sat_y, sat_z = sympy.Symbol('sat_x'), sympy.Symbol('sat_y'), sympy.Symbol('sat_z') weight = sympy.Symbol('weight') theta = EARTH_ROTATION_RATE * (pr - bc) / SPEED_OF_LIGHT val = sympy.sqrt( (sat_x * sympy.cos(theta) + sat_y * sympy.sin(theta) - x) ** 2 + (sat_y * sympy.cos(theta) - sat_x * sympy.sin(theta) - y) ** 2 + (sat_z - z) ** 2 ) if constellation == ConstellationId.GLONASS: res = weight * (val - (pr - bc - bg)) elif constellation == ConstellationId.GPS: res = weight * (val - (pr - bc)) else: raise NotImplementedError(f"Constellation {constellation} not supported") res = [res] + [sympy.diff(res, v) for v in var] return sympy.lambdify([x, y, z, bc, bg, pr, sat_x, sat_y, sat_z, weight], res, modules=["numpy"]) def calc_vel_fix(measurements, est_pos, min_measurements=6): ''' Calculates gps velocity fix with WLS optimizer returns: 0 -> list with velocities 1 -> pseudorange_rate errs ''' if len(measurements) < min_measurements: return [], [] Fx_vel = prr_residual(measurements, est_pos) opt_vel = gauss_newton(Fx_vel, [0, 0, 0, 0]) residual, _ = Fx_vel(opt_vel, no_weight=True) return opt_vel.tolist(), residual.tolist()