import numpy as np from common.realtime import sec_since_boot, DT_MDL from common.numpy_fast import interp from system.swaglog import cloudlog from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N from selfdrive.controls.lib.drive_helpers import CONTROL_N from selfdrive.controls.lib.desire_helper import DesireHelper import cereal.messaging as messaging from cereal import log TRAJECTORY_SIZE = 33 CAMERA_OFFSET = 0.04 class LateralPlanner: def __init__(self, CP): self.DH = DesireHelper() # Vehicle model parameters used to calculate lateral movement of car self.factor1 = CP.wheelbase - CP.centerToFront self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear) self.last_cloudlog_t = 0 self.solution_invalid_cnt = 0 self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3)) self.plan_yaw = np.zeros((TRAJECTORY_SIZE,)) self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,)) self.t_idxs = np.arange(TRAJECTORY_SIZE) self.y_pts = np.zeros(TRAJECTORY_SIZE) self.lat_mpc = LateralMpc() self.reset_mpc(np.zeros(4)) def reset_mpc(self, x0=np.zeros(4)): self.x0 = x0 self.lat_mpc.reset(x0=self.x0) def update(self, sm): v_ego = sm['carState'].vEgo measured_curvature = sm['controlsState'].curvature # Parse model predictions md = sm['modelV2'] if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE: self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z]) self.t_idxs = np.array(md.position.t) self.plan_yaw = np.array(md.orientation.z) self.plan_yaw_rate = np.array(md.orientationRate.z) # Lane change logic desire_state = md.meta.desireState if len(desire_state): self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft] self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight] lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob) d_path_xyz = self.path_xyz # Heading cost is useful at low speed, otherwise end of plan can be off-heading heading_cost = interp(v_ego, [5.0, 10.0], [1.0, 0.15]) self.lat_mpc.set_weights(1.0, heading_cost, 0.0, .075) y_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:, 1]) heading_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw) yaw_rate_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw_rate) self.y_pts = y_pts assert len(y_pts) == LAT_MPC_N + 1 assert len(heading_pts) == LAT_MPC_N + 1 assert len(yaw_rate_pts) == LAT_MPC_N + 1 lateral_factor = max(0, self.factor1 - (self.factor2 * v_ego**2)) p = np.array([v_ego, lateral_factor]) self.lat_mpc.run(self.x0, p, y_pts, heading_pts, yaw_rate_pts) # init state for next # mpc.u_sol is the desired curvature rate given x0 curv state. # with x0[3] = measured_curvature, this would be the actual desired rate. # instead, interpolate x_sol so that x0[3] is the desired curvature for lat_control. self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3]) # Check for infeasible MPC solution mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any() t = sec_since_boot() if mpc_nans or self.lat_mpc.solution_status != 0: self.reset_mpc() self.x0[3] = measured_curvature if t > self.last_cloudlog_t + 5.0: self.last_cloudlog_t = t cloudlog.warning("Lateral mpc - nan: True") if self.lat_mpc.cost > 20000. or mpc_nans: self.solution_invalid_cnt += 1 else: self.solution_invalid_cnt = 0 def publish(self, sm, pm): plan_solution_valid = self.solution_invalid_cnt < 2 plan_send = messaging.new_message('lateralPlan') plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2']) lateralPlan = plan_send.lateralPlan lateralPlan.modelMonoTime = sm.logMonoTime['modelV2'] lateralPlan.dPathPoints = self.y_pts.tolist() lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist() lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/sm['carState'].vEgo).tolist() lateralPlan.curvatureRates = [float(x) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0] lateralPlan.mpcSolutionValid = bool(plan_solution_valid) lateralPlan.solverExecutionTime = self.lat_mpc.solve_time lateralPlan.desire = self.DH.desire lateralPlan.useLaneLines = False lateralPlan.laneChangeState = self.DH.lane_change_state lateralPlan.laneChangeDirection = self.DH.lane_change_direction pm.send('lateralPlan', plan_send)